
Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the information is fit for any
particular purpose. The content of this document reflects only the author`s view – the European Commission is not responsible
for any use that may be made of the information it contains. The users use the information at their sole risk and liability.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 883275

D5.5
Best practices for maintaining/operating the framework in the long-run–

TRL7

Project number 883275
Project acronym HEIR
Project title A secure Healthcare Environment for Informatics Resilience
Start date of the project September 1st, 2020
Duration 36 months
Programme H2020-SU-DS-2019

Deliverable type Demonstrator
Deliverable reference no. D5.5
Work package WP5
Due date 08-2023 – M36
Actual submission date 30/08/2023

Deliverable lead WCS
Editors Dimitrios Karamitros, Ioannis Ladakis
Contributors P.Rodosthenous, N.Dimakopoulos, G.Tsakirakis (ITML),

S.Athanassopoulos (HYGEIA), D.Deyannis, I.Xanthopoulos,
M.Smyrlis, A.Zacharakis (STS), E.Salant (IBM), D.Tsolovos
(STELAR), M.Darwish Khabbaz (TUD), I.Ilie (SIE), B.Prelipcean
(BD), C.Ballas, A.Alexopoulos, A.Sotiropoulos (AEGIS)

Reviewers M.Muzny (NSE), G.Tsakirakis (ITML)
Dissemination level PU
Revision FINAL 1.0
Keywords Maintenance, Deployment manuals, User manuals, Legal, ethical

and privacy concerns, Usefulness verification

Abstract

This deliverable outlines the objectives and key efforts aimed at supporting the commercialization of
HEIR, a solution tailored for the healthcare industry and similar end-to-end environments. The focus
is on establishing best practices for the long-term maintenance and operation of the framework,
initially addressing bugs and gradually implementing a structured maintenance program. The
validation of solutions' effectiveness and scalability is critical, achieved by integrating HEIR into a
real-life environment while ensuring legal, ethical, privacy, and accessibility considerations. The
development of deployment and user guides is highlighted as a crucial resource ensuring the
applicability and usability of HEIR solution. Overall, the document includes all the activities taken in
order to promote and communicate a stable and reliable solution for the healthcare industry and
beyond, revolutionizing the approach to address complex challenges responsibly.

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 2 / 69

Executive Summary
This document’s objective is to support the commercialization efforts of HEIR by delivering a robust
and dependable solution tailored for the healthcare industry and other comparable end-to-end
environments facing similar challenges. Based on task 5.3, the quality tests of T6.31 and the
demonstrator’s execution, our efforts focus on designing and detailing the best practices for the long-
term maintenance and operation of the framework, with a focus on handling software updates. Initially,
maintenance will be performed on an ad-hoc basis to address any bugs discovered during internal testing,
while meticulously logging and analysing all modifications to establish an effective ongoing
maintenance program.

The validation of the effectiveness of the proposed solutions and their efficiency in large-scale utilization
is crucial to ensure the scalability of the existing work. To achieve this, we will integrate the HEIR
framework into a real-life operating environment, allowing us to assess the scalability of its building
blocks and demonstrate a full stack showcase of the solution's capabilities. In doing so, we will
meticulously address legal, ethical, privacy, operational, and accessibility concerns to ensure the
solution's suitability for real-world scenarios.

An integral part of our project is the development of an end-user guide, providing comprehensive
instructions for installing, deploying, and utilizing the HEIR framework and its components. This guide
will serve as a crucial resource to facilitate smooth implementation and utilization by end-users.

Through these efforts, the ultimate goal of this document is to establish a stable and reliable solution
that meets the unique requirements of the healthcare industry and other end-to-end environments. The
HEIR framework is poised to revolutionize the way such industries tackle challenges, offering an
innovative and comprehensive approach to address complex issues effectively and responsibly.

1 Task 6.3 (WP6): Evaluation and impact analysis

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 3 / 69

Table of Contents
EXECUTIVE SUMMARY .. 2

1. INTRODUCTION ... 5

1.1 SCOPES AND OBJECTIVES ... 5
1.2 DOCUMENT STRUCTURE .. 5
1.3 RELATION TO OTHER TASKS AND WORK PACKAGES ... 5

2. MAINTENANCE PLANNING .. 6

2.1 SOFTWARE MAINTENANCE PLAN GOALS .. 6
2.2 TYPES OF SOFTWARE MAINTENANCE ... 6
2.3 THE CONCERNS OF MAINTAINING A SOFTWARE FRAMEWORK IN THE LONG RUN 7
2.4 DESIGN OF THE MAINTENANCE PLAN ... 9
2.5 MAINTENANCE PLAN BEST PRACTICES ... 11

3. VERIFICATION OF FRAMEWORK USEFULNESS ... 15

3.1 END-USED ASSESSMENT RESULTS .. 15
3.2 THIRD-PARTY STAKEHOLDERS FEEDBACK RESULTS .. 16

4. HEIR FRAMEWORK LEGAL, ETHICAL AND PRIVACY CONCERNS .. 17

4.1 LEGAL ASPECT ... 17
4.2 ETHICAL ASPECT .. 17
4.3 PRIVACY ASPECT ... 17

5. END-USER GUIDELINES OF HEIR FRAMEWORK COMPONENTS ... 19

5.1 HEIR FACILITATORS .. 19
5.2 HEIR CORE FRAMEWORK COMPONENTS .. 46

6. CONCLUSION .. 69

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 4 / 69

List of Figures
FIGURE 1: TYPES OF SOFTWARE MAINTENANCE .. 7
FIGURE 2: MAINTENANCE PROCESS ACTIVITIES .. 10
FIGURE 3: LOGIN SCREEN .. 21
FIGURE 4: COMPLETE PAGE OF HEIR CLIENT GUI ... 22
FIGURE 5: LOCAL AND GLOBAL RAMA SCORES ... 22
FIGURE 6: RAMA INFOGRAPHICS ... 23
FIGURE 7: GENERIC STATISTICS .. 23
FIGURE 8: CONNECTED CLIENTS ... 24
FIGURE 9: OVERVIEW & DEVICES ... 25
FIGURE 10: CONNECTED DEVICES ... 26
FIGURE 11: ANALYSIS DASHBOARD .. 27
FIGURE 12: EVENT ANALYSIS ... 28
FIGURE 13: COMPLETE PAGE OF FIRST LAYER GUI .. 31
FIGURE 14: OVERVIEW & DEVICES - FUNCTIONALITIES .. 32
FIGURE 15: ANALYSIS DASHBOARD .. 34
FIGURE 16: EVENT ANALYSIS ... 36
FIGURE 17: THE PRIVACY AWARE FRAMEWORK CONCEPTUAL ARCHITECTURE .. 40
FIGURE 18: REQUIRED FILES FOR HEIR AGENT INSTALLATION ... 47
FIGURE 19: HEIR AGENT INSTALLER .. 47
FIGURE 20: FIRST WINDOW OF INSTALLATION PROCEDURE ... 47
FIGURE 21: SECOND WINDOW OF INSTALLATION PROCEDURE - THE USER SHOULD PRESS INSTALL BUTTON TO
CONTINUE .. 48
FIGURE 22: END OF INSTALLATION PROCEDURE. THE HEIR AGENT HAS BEEN SUCCESSFULLY INSTALLED 48
FIGURE 23: CHECKING HEIR AGENT SERVICE STATUS .. 49
FIGURE 24: CHECKING THE CREATION OF TEMPORARY FILES IN BDHEIRAGENTLOG.LOG FILE 49
FIGURE 25: ACCESS CONTROL PANEL .. 50
FIGURE 26: UNINSTALL OR CHANGE A PROGRAM PANEL - FIND HEIR AGENT PROGRAM .. 50
FIGURE 27: VERIFICATION OF HEIR AGENT SUCCESSFUL UNINSTALL .. 51
FIGURE 28: HEIR OBSERVATORY LOGIN PAGE .. 62
FIGURE 29: HEIR OBSERVATORY MAIN DASHBOARD .. 63
FIGURE 30: HEIR OBSERVATORY VULNERABILITIES ... 64
FIGURE 31: HEIR OBSERVATORY SYSTEM MODULES .. 64
FIGURE 32: HEIR OBSERVATORY CONNECTED HOSPITALS .. 64
FIGURE 33: HEIR GLOBAL POLICIES .. 65

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 5 / 69

1. Introduction
1.1 Scopes and objectives
The primary aim of this document is to support the commercialization endeavours of HEIR by
introducing a resilient and dependable solution tailored for the healthcare sector and analogous end-to-
end environments grappling with similar challenges. Our primary focus revolves around shaping and
articulating optimal protocols for the enduring maintenance and operation of the framework, with
specific attention to managing software updates. In the initial phases, an overall maintenance plan will
be designed to address any bugs discovered during internal testing as well as to ensure the continuous
monitoring of any updates and upgrades of the solution.

Central to the sustainability of our efforts is the validation of the proposed solutions' efficacy. To realize
this objective, the integration of the HEIR framework within a real-world operational context is vital.
Throughout this process, we are committed to thoroughly addressing concerns spanning legality, ethics,
privacy, operational logistics, and accessibility, affirming the adaptability of the solution to real-world
settings.

An indispensable component of our project involves the creation of deployment and user guides/manuals
for each one of the HEIR’s components, furnishing comprehensive instructions for the installation,
deployment, and effective utilization of the HEIR framework and its constituent elements. This guide
assumes a central role in facilitating the implementation process and enhancing the accessibility of the
solution for end-users.

1.2 Document structure
The structure of the document is the following:

• Section 2: provision of an overview of best practices for maintenance and operational planning
and presentation of a maintenance plan for HEIR framework

• Section 3: presentation of results regarding the verification of framework’s usefulness based on
the quality tests of T6.3

• Section 4: presentation of legal, ethical, privacy and operational concerns
• Section 5: provision of installation and user manuals per HEIR component
• Deliverable conclusion

1.3 Relation to other tasks and work packages
This deliverable is based on the technical work that was part of all Tasks of WP2 and WP5 for
developing deployment/installation manuals and user manuals for all components of HEIR framework.
Moreover, it is closely related to T6.3 for usefulness verification and T7.5, T7.6 for the discussion
around legal, ethical and privacy concerns.

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 6 / 69

2. Maintenance planning
The initial production release of a software system is always a very important step. However, it would
be naïve to assume that this is the end for the product development teams. This very first release of
software always requires a significant amount of attention to make sure that it not only remains
functional but also evolves by means of bug fixing, functionality adaptations, and new feature
incorporation.

The HEIR platform developed in the scope of the project is a quite complex and distributed software
system that has been thoroughly tested and evaluated during the project's pilot studies by different
healthcare organizations. Its complexity is only further increased because its subcomponents have been
developed by different stakeholders, while their configuration, coordination and integration into a well-
orchestrated system has been challenging.

A maintenance plan would outline the comprehensive strategies, processes, and resources required to
ensure the effective and efficient maintenance of the HEIR framework throughout its lifecycle. It is a
crucial part for maximizing system performance, addressing software issues, and meeting the evolving
needs of users and stakeholders. The maintenance plan's primary objective is to maintain and enhance
the software's functionality, reliability, and usability in the long term.

2.1 Software maintenance plan goals

Overall, a well-designed and carefully thought of maintenance plan aims to achieve the following goals:

• Minimize system downtime by promptly addressing software issues and applying necessary
fixes.

• Enhance system performance through performance optimization and tuning.
• Ensure the software remains compatible with evolving technology platforms and environments.
• Implement security updates and patches to protect against vulnerabilities and cyber threats.
• Continuously improve the software by incorporating user feedback and implementing new

features.
• Adhere to regulatory and compliance requirements specific to the software domain.

A solid maintenance plan would need to not only take into consideration all the software components
and modules of the platform software, both on an individual level but, but additionally all the backend
infrastructure, databases, user interfaces, and integrations required to bring the HEIR platform to life.
The skeleton for HEIR’s framework maintenance plan will be discussed over the following subsections,
initially presenting the concerns it must address, then its design procedure as well as the best practices
it must encompass.

2.2 Types of software maintenance

Software maintenance can be performed for a variety of purposes and reasons. All systems, regardless
of their current lifespan, undergo maintenance actions on a regular basis. During the lifetime of software,
the type of maintenance required can vary depending on its nature. Maintenance tasks can range from
routine bug fixes reported by users to significant events that involve large-scale maintenance activities.
Some of the types of maintenance that would be applicable to the long-term operation of the HEIR
framework. are2:

• Corrective Maintenance: Addressing reported bugs, errors, or malfunctions in the software. This
involves thorough debugging, troubleshooting, and applying patches or fixes.

• Adaptive Maintenance: Modifying the software to accommodate changes in the technology
landscape, such as updates to operating systems, libraries, or hardware platforms.

2 https://www.tutorialspoint.com/software_engineering/software_maintenance_overview.htm

https://www.tutorialspoint.com/software_engineering/software_maintenance_overview.htm

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 7 / 69

• Perfective Maintenance: Enhancing existing features, optimizing performance, and improving
user experience based on user feedback and emerging needs.

• Preventive Maintenance: Taking proactive measures to prevent potential issues, such as
conducting routine system checks, optimizing resource utilization, and applying security
patches.

Figure 1 presents in a nutshell how a request for a change in a production system is classified and always
ends up being an action contained in a corrective, preventive, adaptive, or perfective maintenance plan.

Figure 1: Types of software maintenance

2.3 The concerns of maintaining a software framework in the long run
An extensive maintenance plan is required to address a range of concerns that are critical for the
successful management and sustainability of a software application or framework in the long run. These
concerns encompass various aspects, including technical, operational, and strategic considerations. The
key concerns of such a maintenance plan are:

Software Stability and Reliability

Maintaining software stability and reliability is a primary concern. No system is designed, developed,
and rolled out to production with a short life in mind. The maintenance plan should outline procedures
for identifying, addressing, and resolving software bugs, errors, and malfunctions. It should include
strategies for conducting comprehensive testing, debugging, and applying necessary fixes to ensure that
the said system operates reliably and consistently.

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 8 / 69

Performance Optimization

The optimization of any software system in terms of performance is essential to deliver a seamless user
experience. The maintenance plan should define performance metrics, set targets, and establish
monitoring mechanisms to identify performance bottlenecks, optimize resource utilization, and enhance
system responsiveness. It should also address scalability concerns to ensure that the software can handle
increasing user loads or growing datasets efficiently.

Security and Vulnerability Management

Addressing security concerns is crucial to safeguard the software and protect user data. The maintenance
plan should encompass strategies for identifying and addressing security vulnerabilities as they occur,
applying patches and updates, and ensuring compliance with relevant security standards and regulations.
It should include routine security audits, vulnerability assessments, and the implementation of
appropriate security measures to protect against potential threats.

Technology and Compatibility

Based on today’s extremely fast pace with which software technologies advance, keeping the software
components of a system up-to-date and compatible with evolving technology platforms is vital. The
maintenance plan should outline procedures for assessing the impact of new technological versions,
operating system updates, or hardware changes on the software. It should include strategies for adapting
the software to ensure compatibility and interoperability, such as updating libraries, APIs, or
dependencies.

Change Management

Managing software changes is essential to maintain stability and prevent unintended consequences. A
maintenance plan should incorporate change management processes, including version control,
configuration management, and documentation updates. These processes should take into consideration
the fact that different software components which are part of the system are offered by different vendors,
as is the case in HEIR. Therefore, it is imperative that the different component vendors (or project
partners in the HEIR example), keep an always up-to-date record of changes performed, including
changelogs, configuration, or deployment/installation changes.

In a highly complex system like HEIR, where different components interact to provide a unique service
within the HEIR premise, isolated changes can potentially have a negative impact on the system
performance and optimal functional behavior. Therefore, procedures for assessing the impact of changes
need to be in place and respected, conducting thorough testing, and ensuring proper deployment and
rollback mechanisms.

Continuous Improvement and Innovation

Promoting continuous improvement and innovation is essential for the software's long-term success.
The maintenance plan should include mechanisms for gathering user feedback, tracking emerging needs,
and incorporating enhancements and new features. It should establish processes for soliciting ideas,
conducting research and development, and aligning the software with evolving industry trends and best
practices.

User Support and Issue Resolution

Addressing user issues and providing effective support is a critical concern. On the client facing front,
the maintenance plan should define channels for users to report problems, specify response times, and
establish procedures for issue triage, categorization, and resolution. It should include a knowledge base,
FAQs, and self-help resources to empower users to resolve common issues independently. The plan
should also outline escalation procedures for critical or complex issues, ensuring timely and effective
support.

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 9 / 69

From the administrative point of view, support and administrator roles need to be assigned to dedicated,
well-known stakeholders in the organizations that adopt HEIR in their daily routines and processes
(operations and support personnel).

Business Continuity

Ensuring business continuity is a strategic concern. The maintenance plan should address disaster
recovery, backup strategies, and contingency planning. It should include procedures for scheduled and
recurring data backups, replication, and restoration processes to mitigate the risk of data loss or system
downtime. Furthermore, the maintenance should also consider infrastructure made redundant or obsolete
over time and failover mechanisms. A significant aid towards this direction may be the definition and
execution of business continuity exercises to ensure that the HEIR system, both on a component level
but mainly and most importantly on a global level, can recover rapidly from disruptions, no matter how
catastrophic they might be.

Cost effectiveness

Any software platform needs to meet its business requirements and serve the purpose it was built for but
to what financial cost? Although it does not seem or feel like it, the cost-effectiveness of a platform is
crucial to its long-term success and sustainability. A final responsibility of the maintenance plan is to
always make sure that a platform’s operational costs are kept at a minimum without
compromising the platform’s effectiveness.

2.4 Design of the maintenance plan
A maintenance plan exists to address all required activities that will keep a software system or platform
fully operational and fulfilling its purpose in the long run.

For the design of the HEIR project’s maintenance plan, we adopted IEEE’s framework for sequential
maintenance activities3. This framework includes a series of steps (Figure 2):

3 Mamone, S. (1994). The IEEE standard for software maintenance. ACM SIGSOFT Software Engineering Notes, 19(1),
75-76.

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 10 / 69

Figure 2: Maintenance process activities

In the remainder of this section, the phases of maintenance activities are described, along with best
practices for each phase. Additionally, best practices that concern the complete maintenance cycle will
be reported for reference.

• Identification & Tracing Phase – This phase encompasses tasks related to identifying the need
for modifications, be it updates or fixes to the operational system. This phase can be triggered
either by a user experiencing issues while operating the system or an issue detected
automatically through logs or error messages. It is in this phase that the type of maintenance to
be applied is classified in one of the types described in Section 2.2.

• Analysis Phase - The analysis of system modifications to be applied considers their impact on
various aspects, such as system safety and security, interoperability, and integration. If the
potential impact is deemed insignificant, then the whole maintenance cycle is limited in
duration. If the potential impact is deemed significant, alternative solutions may need to be
explored. The identified set of required modifications is then transformed into detailed
requirement specifications. Additionally, the cost of the modifications or maintenance is
carefully analyzed, and a thorough estimation is conducted.

• Design - The design of new modules, intended for replacement or modification, is based on the
requirement specifications established in the previous stage. In the case of production bug hot
fixes, the design phase may be skipped. Test cases (unit, integration, regression) are developed
to ensure proper validation and verification of the redesigned modules or the bug fixes at hand.

• Implementation - The coding of the new modules is carried out based on the structured design
developed in the previous step. Each software engineer assigned to the task is responsible for
conducting unit testing simultaneously with the coding process.

• System Testing - Integration testing is performed to ensure seamless interaction among the
newly developed, modified, or patched modules. Additionally, integration testing is conducted

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 11 / 69

between the target modules and the overall system. Subsequently, the system undergoes
comprehensive testing as a unified entity, following regression testing procedures. A staging
environment where all these tests will be performed, resembling the exact same conditions of
the production system, is crucial for the success of this phase.

• Acceptance Testing - Once the internal testing of the system is completed, it proceeds to
undergo acceptance testing with the involvement of dedicated actors that act as end users.
During this stage, if users encounter any issues or concerns, they are promptly addressed or
recorded for future iterations.

• Delivery - Following the successful acceptance test phase, the system is deployed throughout
the organization either through a small update package or a fresh installation. At the client's end,
final testing is conducted after the software is delivered. If necessary (potentially due to a
significant change in the systems functionality), training must be provided, while the user
manual is updated to ensure smooth adoption and usage of the system.

• Maintenance management - Configuration management plays a vital role in system
maintenance, ensuring the effective control and management of system configurations. To
facilitate this process, version control tools are utilized, enabling the control of different
versions, semi-versions, or patches within the system.

2.5 Maintenance plan best practices
This section reports on the best practices regarding the design of a maintenance plan and procedure,
which will be included in HEIR’s plan to ensure the operational success of the framework after the end
of the project.

The maintenance plan must define all processes to handle software updates, patches, and new feature
deployments. It defines versioning schemes and release cycles, considering factors such as bug fixes,
feature enhancements, and compatibility requirements. The plan outlines the stages of release, including
development, testing, quality assurance, and production deployment. It ensures that release packages
are well-documented and thoroughly tested to minimize the risk of introducing new issues, among
others.

2.5.1 Alignment of maintenance plan with business goals
The organization that adopts the HEIR framework clearly has specific expectations and goals that they
aim to achieve through the framework adoption in their daily processes. Maintenance activities must
first and foremost align with the organization’s goals.

Different organizations adopting HEIR may have different goals; others prefer having a robust and
always evolving cyber- security protection system that manages to track down new threats. Others need
a system that is cost-effective and manages to achieve the same goals over time with little to none
maintenance. Maintenance metrics and KPIs need to be carefully selected, aligned with the business
goals and objectives, to track progress and measure success. Finally, the critical points of the system, be
it software or infrastructure, need to be identified; tackling issues that these points present may be the
key to successful maintenance, aligned with the business objectives and KPIs.

2.5.2 Regular updates, upgrades and patches
Regularly updating and upgrading software is a critical process that ensures its ongoing security,
reliability, and performance. In addition to planned upgrades and updates, the system needs to be
regularly scanned for emerging security threats vulnerabilities. Even though the HEIR framework
attempts to tackle cybersecurity threats in environments where data access and management is critical,
it is a software system of its own. Regular security scans on all its subcomponents and their interfaces,
as well as on the infrastructure that HEIR is running on, with industry established tools (for example
Snyk.io) can uncover many underlying security threats and vulnerabilities that are found every day.
There are several different available open vulnerability registrars where system administrators or

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 12 / 69

software architects and engineers can look up threats and their fixes, as well as mitigation strategies until
a fix on a commercially available or open-source dependency is resolved and fixed. Identification of
bugs and security vulnerabilities and their subsequent classification based on their criticality to the
security, stability, or proper functionality of the system results in tightly timed update and upgrade plan.

A regular update schedule with well-defined timings needs to be established and followed by all
stakeholders in HEIR, be it the original developer partners or the IT personnel in the organization where
HEIR is deployed and used.

A manual upgrade or update plan on its own is neither time nor cost effective. Automated update
mechanisms need to be established and adopted, streamlining the process, making it seamless for users
and system administrators to receive and install updates.

2.5.3 Effective maintenance role assignments and processes
Early in the software development lifecycle, maintenance needs to be considered as if it were one of the
system’s original requirements. Building a software system and then attempting to create an appropriate
maintenance plan is becomes a burden. Not only the maintenance aspects and goals need to be clearly
defined, but the teams also that will be participating in the complete maintenance phase of the HEIR
framework in production need to be clearly defined, along with their roles, their responsibilities, and
their accountabilities. Maintenance can be performed by different stakeholders, including the original
development team, an in-house maintenance team, or a third-party maintenance provider. It is therefore
crucial that maintenance teams have clear goals and responsibilities, as well as all the necessary training
materials of the system parts they need to maintain. Training materials include production level
operation and deployment manuals, component specifications and configurations. For the maintenance
tasks performed regularly by these teams, checklists and maintenance reports must be established.

Key roles assigned to a maintenance team include the maintenance manager that oversees the overall
maintenance activities, sets priorities, and ensures adherence to the defined plans. Then, the maintenance
team, comprised of skilled software developers, testers, system administrators, and support staff
responsible for executing maintenance tasks. Finally, the users or user representatives that are
responsible for reporting issues, providing feedback, and collaborating with the maintenance team.

2.5.4 Proactive monitoring
Proactive monitoring is a crucial aspect of software maintenance. Automated monitoring tools with
embedded alerting capabilities can provide quick insights on the operational status of the system and
help identify potential issues and optimizations that can be incorporated in the next maintenance cycle.
The issues identified with an automated monitoring solution can range from performance bottlenecks
under heavy load to unhandled exceptions. Informed decision-making on emergency, planned or future
improvements can only stem from accurate monitoring of the running system.

Appropriate metrics need to be established for proactive monitoring to be effective. Performance
hotspots, resource utilization, memory usage, response times that need to be kept to a minimum are such
metrics. Metrics can also be established and tracked for the infrastructure on which the HEIR framework
is operating. Key performance indicators (KPIs) are established to measure system reliability,
responsiveness, uptime, and user satisfaction. Monitoring tools and automated alerts are employed to
proactively identify and address performance bottlenecks, anomalies, and potential issues.

2.5.5 Quality assurance
Before deploying updates to production systems, testing them in a controlled environment is crucial. By
testing updates in a staging or testing environment, any compatibility issues, conflicts, or unexpected
behavior can be identified. This helps at the assessment of the impact of updates and the validation of
their effectiveness before applying them to production environments. Thorough testing validates that
the updated software functions as expected and doesn't introduce new problems or regressions. A
complete quality assurance cycle must be defined and applied during all phases of the software
development lifecycle, from design to release. Quality assurance must go beyond the mandatory unit
testing that software developers alone can create and support. Complete end-to-end, integration and

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 13 / 69

regression tests must be defined, executed and regularly updated to properly assess any change, minor
or major in the component or the system under test.

2.5.6 Documentation
In software engineering, comprehensive documentation may be even more important than the system
being developed. From the original system requirements and specifications that drove the design of the
system, all the way down to the code developed and the operation/deployment manuals, everything must
be documented. Yet today, even in large scale production systems, we are still a long way to go from
having an established mentality for properly structured and maintained documentation, where people
involved in the design and implementation of the system need not be persuaded on the documentation’s
importance.

Poorly documented systems make it very difficult to understand how they are working, what their pain
points are and how they are orchestrated among others. For an effective maintenance plan for HEIR, all
its subcomponents need to be documented thoroughly. Documentation must include user guides, i.e.
detailed instructions and information to assist users in effectively utilizing the software's features and
functionalities, technical manuals, i.e. technical documentation, including system architecture, API
references, and configuration guides, release notes. Finally, documentation must highlight changes, bug
fixes, and new features introduced in each software release, including the date, nature of the change, and
individuals involved. The aforementioned are all critical aspects of components that need to be
documented since their inception. Documenting changes, known issues, troubleshooting procedures and
other critical aspects greatly simplifies the corrective or preventive processes of maintenance. As a
component undergoes changes over time, so are the teams that are responsible for their management and
maintenance. Knowledge transfer to newly appointed team members without comprehensive
documentation is impossible to say the least.

The maintenance plan emphasizes the importance of comprehensive documentation to support
maintenance activities.

As the components evolve, so should their accompanying documentation material be updated regularly
to reflect all the different recent changes made. Outdated documentation is useful to none.

2.5.7 Version control and management
Apart from a solid documentation, version control and configuration management systems can be
employed by teams to track changes, revert to previous versions if needed, and collaborate effectively,
ensuring transparency and accountability throughout the maintenance process.

The establishment of formal procedures to manage and document changes is crucial. Proper version
documentation, changes tracking, and approval procedures ensure that updates are applied in a
controlled and consistent manner. This reduces the risk of unintended consequences or conflicts with
existing configurations. Maintaining accurate and up-to-date documentation of the whole procedure,
including applied updates, configuration changes, testing results, and known issues, is a good practice
as it serves as a valuable resource for future updates and troubleshooting.

2.5.8 Bug tracking and defect management
A major channel facilitating the identification of the different system’s defects is user feedback.
Monitoring may prevent quite a lot of defects, but it is the users’ perception of the system’s operational
status that provides valuable insights as to what kind of problems they are experiencing while using the
HEIR system. The definition of support and escalation procedures is crucial to ensure timely assistance
and issue resolution. Users can report software issues through designated channels, such as a help desk
ticketing system or a dedicated support email. The plan outlines the process for issue triage,
categorization, and prioritization. The critical or complex issues reported by users are escalated to
higher-level support or development teams for expedited resolution. It is the maintenance plan that must
define metrics pertaining to the maintenance team’s response times versus the time a defect was reported
via the defined reporting channels.

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 14 / 69

2.5.9 Risk management
A maintenance cycle is always a risky operation. All critical components, flows and operations and
integration interfaces would need to be identified before the HEIR framework is released for production.
It is only then that a risk registry can be compiled, allowing for the prioritization of bugs and defects
during scheduled or emergency maintenance actions.

2.5.10 Data retention and backup
Data retention and backup schedules must be defined before the system launches into production. It is
imperative that data retention policy rules are defined, as well as a strict database backup schedule, with
clear rules on the timings, frequency, and backup retention windows. In the case of a catastrophic event,
a tightly defined retention plan allows for a quick recovery from a data loss scenario, minimizing the
effect of critical data being lost or corrupted.

2.5.11 Security compliance
The update/upgrading planning requires cautious steps regarding the existing data and configuration.
Taking backups is a necessary precaution, as this ensures the restoration of the system to a previous
working state in case of any issues during the update process, minimizing data loss and disruption.
Moreover, compatibility and dependencies issues should be considered, as well as security-related
improvements to address vulnerabilities that can be exploited by malicious actors. Vulnerabilities may
come from a variety of different sources, from dependencies used during the development of a
component to the access control schemes of the underlying infrastructure the system is running on.

It is crucial that security is at the top of priorities when a component is developed. Best practices on
addressing well-known vulnerabilities are available and the development team must always make sure
to align with these practices from the early days of the component. The interfaces of the components
and the integration points must also be secured, eliminating the risk of data breaches or leaks.

Industry security standards exist that the development and maintenance teams need to adhere to.
Adherence must be checked regularly on every minor or major change in the component. The initial
security certification (base on available certifications and standards) provides the confidence to the end
user that what they are operating is secure and their renewal solidifies that despite changes and
reconfigurations the components of the system are still following best practices, guidelines, and industry
standards. Each component owner must seek to acquire the security certifications which are relevant for
their component and for the HEIR system.

The maintenance plan must also include a regular penetration tests schedule to be executed. It is
preferable that the penetration testing processes are undertaken and initiated preferably by external to
HEIR stakeholders. The penetration test process itself must be part of the maintenance plan. Their
outcomes must be made quickly available to the development teams and the system administrators, so
that not only corrective actions can be applied in the form of maintenance, but they are kept safely as
part of the system’s documentation for future reference.

Under perfect conditions, systems do not change, and a maintenance plan defined during the initial
launch would run like clockwork. Unfortunately, this is never the case. As the software, technologies,
infrastructure, business needs evolve, the same applies for maintenance plan; it must never be considered
as being set in stone. The maintenance plan needs to be regularly revisited, evaluated and aligned with
the software it serves.

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 15 / 69

3. Verification of framework usefulness
In terms of expanding the applicability of HEIR framework, an assessment of the framework is required
for the verification of its usefulness. This part of the work is covered by T6.3 and is reported in D6.3.
The key factors that were assessed in terms of usefulness are:

• Effectiveness: It involves evaluating whether the framework can solve the problems it was
designed to address and achieve the desired outcomes.

• Practicality: Practicality involves examining how easily users can adopt the framework, its
learning curve, and whether it streamlines existing processes.

• Suitability: It involves understanding if the framework's features align with the requirements
and preferences of its intended users.

• Performance: This includes evaluating processing speed, resource utilization, and how well the
framework scales with increased demand.

• Reliability: Reliability verification involves testing the framework under various scenarios to
identify potential issues and ensure it can be trusted for critical tasks.

• Scalability: Scalability verification ensures that the framework can handle increased usage
without a significant drop in performance.

• User Satisfaction: This involves obtaining insights into user experiences, feedback on usability,
and the overall satisfaction with the solution.

• Real-world Validation: This involves deploying the framework in production or pilot
environments to understand how it performs with real data and user interactions.

The aforementioned factors were evaluated via questionnaires and short interviews4 that were provided
to the pilots and third-party stakeholders (IT and non-IT experts) as well in terms of training days
organized by HEIR consortium. Real-world validation is continuously monitored via the deployment of
the framework’s components on the 4 pilots of HEIR project.

In this section, a summary of the D6.3 results is presented.

3.1 End-used assessment results
3.1.1 User Experience
The utilized questionnaire was User Experience Questionnaire (UEQ5) to assess six usability and user
experience aspects, namely Attractiveness, Perspicuity, Efficiency, Dependability, Stimulation, and
Novelty. Seven responses were collected from personnel not adequately familiarized with HEIR
solution. The highest scores were achieved for Stimulation, Novelty, and Dependability aspects
signifying a tendency towards high satisfaction, while rather neutral score is achieved for Perspicuity.
None of the items receives a negative rating, indicating the maturity and the robustness of HEIR solution.
A more thorough investigation of the UEQ’s responses shows that the respondents perceived HEIR
framework as an inventive, supportive, good, meeting expectations, creative, exciting, interesting,
organized and innovative solution, while, on the other hand, they pointed out difficulty to learn the
functionalities of the framework, unpredictability, slowness, complicated, unlikability, usual, not secure,
inefficient, confusing and unfriendly as variables with lower mean scores and, thus, as aspects that
should be investigated more.

3.1.2 Technology & Operational Acceptance
Technology and operational acceptance were evaluated via short interviews – open questions by the four
pilots based on their experience during the deployment and testing of the framework. It is worth
mentioning that the whole HEIR system was not installed across all sites, permitting only the testing of
specific and separated components per pilot. Thus, the reports confirmed that the tested components
were easy to use and had no issues in integrating with the respective infrastructure, but it is problematic
that a complete assessment of the whole system could not be achieved. However, having tested various

4 D6.3. Assessment report and impact analysis
5 https://www.ueq-online.org/

https://www.ueq-online.org/

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 16 / 69

components and evaluating their functionalities and the ability to be integrated in various systems, the
results are promising regarding the efficiency and applicability of HEIR framework as a whole.

3.1.3 Impact
The impact of the installed components was assessed via short interviews – open questions that were
collected from people with some experience with the HEIR framework for a relatively short period of
time. The results indicate that the HEIR framework modules would potentially have a great impact in:

• Enhancing cybersecurity and protection against cyberattacks
• Enhancing the protection and confidentiality of sensitive data protection
• Continuously monitoring the availability and reliability of medical systems and devices

In general, it was recorded a positive reaction regarding the potential impact of HEIR
framework.

3.2 Third-party stakeholders feedback results
Third-party stakeholders’ feedback was collected during dedicated training-info days from IT and non-
IT experts in healthcare centres and hospitals via short, customized questionnaires. During these
sessions, participants were tasked with evaluating the usefulness of particular HEIR modules, expressing
their overall impressions, and identifying any lacking features. Additionally, they were requested to rate
the importance and effectiveness of the presented content.

3.2.1 IT experts feedback on HEIR solution
The majority of the experts (62,5%) are not familiar with the management of cybersecurity systems or
with actions to be taken as responses to cybersecurity incidents. Their answers per HEIR
module/component tended to be positive:

• 59% of the participants reported that HEIR’s Threat Hunting Module is better compared to their
existing solution, with 33% reporting that they found it equivalent.

• 50% reported a supremacy of HEIR’s Anomaly Detection Module, while 34% found it
equivalent to their existing solution.

• HEIR’s Observatory was assessed as quite useful for aiding risk assessment and determination
of remedial actions with 69% answering over 4 in a likert-scale from 1 to 5.

• 75% of the respondents were in favour of HEIR’s Privacy Aware Framework as a solution that
contributes at defining who is entitled to the data of their department.

In general, only 17% of the participants considered that HEIR solution will not, moderately or
significantly, improve their performance, while the overall perception of HEIR solution was positive or
very positive for 65% of them. Some potential issues were reported, like the real-world communication
with FHIR, the actual interoperability of FHIR, and the need for a push notification/alert mechanism.

3.2.2 Non-IT experts' feedback on HEIR solution
50% of non-IT experts reported to have an administrative role within their organization, with the
remaining 50% belonging to the clinical staff. Even though not so familiar with cybersecurity issues and
potential risks, 68% of the participants responded positively regarding the potential usefulness of Private
Aware Framework. Furthermore, 72% expected a positive impact on their daily tasks with the use of the
HEIR solution, while 83% expressed a positive perception of the HEIR solution.

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 17 / 69

4. HEIR framework legal, ethical and privacy concerns
 As HEIR project progresses, it becomes crucial to address several key areas of concern to ensure its
responsible and ethical implementation. Legal considerations play a pivotal role in ensuring compliance
with regulations and safeguarding the rights of stakeholders involved. Ethical implications arise from
the potential impact of the project on individuals and society as a whole, necessitating a thoughtful and
principled approach. Privacy concerns are of paramount importance, especially when dealing with
sensitive healthcare data, demanding robust measures to protect patient confidentiality and data security.
This section discusses the legal, ethical and privacy related concerns regarding HEIR framework.

4.1 Legal aspect
 Since the HEIR project deals with cybersecurity on hospital environments, the main legal issues that
need to be addressed are the following:

• Data privacy and protection (laws and regulations include the GDPR, e-Privacy directive and
other regional and national laws that apply to each specific partner country),

• Security measures with laws and regulations such as the NIS (2) Directive, the eIDAS
regulation6 etc.,

• Possible adherence to different Human Rights regulations such as the European Convention
on Human Rights (ECHR) and the European Charter of Fundamental Rights (CFREU) also
needs to be addressed.

4.2 Ethical aspect
 The main ethical aspects that a project such as HEIR needs to address include:

• Confidentiality and privacy: Protecting confidentiality and privacy requires a commitment to
robust security measures to shield sensitive information from unauthorized access. This
involves continuous monitoring and updating of security protocols to align with the ever-
evolving cybersecurity landscape.

• Security: The HEIR project implements state-of-the-art measures to ensure data security, while
also ensuring that medical information and care remain accessible when needed.

• Patient consent and autonomy: The HEIR project prioritizes patient consent and autonomy
by ensuring that all individuals are provided with clear, concise information about how their
data will be used, and that consent is obtained voluntarily. Respecting patients' rights to control
their personal information and acknowledging their ability to withdraw consent at any time is
crucial.

• Transparency: Ethical conduct demands transparency in operations and a commitment to
accountability. The HEIR project has measures in place to clearly communicate its data usage
policies to all stakeholders and establish oversight mechanisms that include periodic audits or
reviews.

• Research Ethics: The project has aligned itself with ethical guidelines for medical research.
This includes obtaining proper ethical approvals where needed and maintaining transparency in
research methodology.

• Collaboration and Third-Party Relationships: Ethical collaboration involves assessing third-
party vendors and collaborators to ensure alignment with ethical principles. The HEIR project
establishes clear agreements that do not compromise patient rights or confidentiality.
Collaborative engagements have been built on shared values and a commitment to ethical
conduct.

4.3 Privacy aspect
 The main privacy aspects that a project such as HEIR needs to address are based on the 7 established
principles of the GDPR:

6 https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation

https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 18 / 69

• Lawfulness, fairness and transparency: Processing must be lawful, fair, and transparent to
the data subject. This means the person whose data is being processed should understand how
and why it is being used.

• Purpose limitation: Personal data must be collected for specified, explicit, and legitimate
purposes and not further processed in a manner that is incompatible with those purposes.

• Data minimization: Processing of personal data must be adequate, relevant, and limited to what
is necessary in relation to the purposes for which they are processed. This is about collecting
only the data that is strictly required for the intended purpose.

• Accuracy: Personal data must be accurate and, where necessary, kept up to date. It must be
corrected or deleted without delay when inaccurate.

• Storage limitation: Personal data must be kept in a form that permits identification of data
subjects for no longer than is necessary for the purposes for which the personal data are
processed.

• Integrity and confidentiality: Personal data must be processed in a manner that ensures
appropriate security. This includes protection against unauthorized or unlawful processing and
against accidental loss, destruction, or damage, using proper technical or organizational
measures.

• Accountability: The data controller is responsible for and must be able to demonstrate
compliance with the other six principles. This means having appropriate data protection policies,
data protection impact assessments, relevant documentation on how data is processed, and
relevant training for staff.

More details on how these Legal, Privacy and Ethical aspects are covered by the HEIR project can be
found on deliverables D7.5 and D7.6.

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 19 / 69

5. End-user guidelines of HEIR framework components
This section includes installation and user manuals and guidelines for each HEIR component. The main
objective of this section is to provide clear and complete guidelines not only ensuring the uncorrupted
installation of HEIR framework, but also exposing the means of interaction with the framework in a
comprehensible way.

5.1 HEIR facilitators
5.1.1 1st Layer GUI and Forensics Visualization Toolkit (FVT)
5.1.1.1 Installation guide

The 1st Layer GUI is a user-friendly web-based application that serves as the central interface for
accessing and analysing information within the HEIR ecosystem. Built on an Angular framework, this
GUI offers a comprehensive dashboard presenting aggregated security indicators, metrics, and outcomes
derived from various HEIR components. Authorized users and security experts can gain valuable
insights into their organization's security landscape.

On the other hand, the Forensics Visualization Toolkit (FVT) is a toolkit accessible through the 1st
Layer GUI. It is also a web-based application that enables detailed investigations and analysis of
departmental and device-specific security events and alerts. The FVT empowers authorized users and
security experts with advanced functionalities, including timelines, charts, and interactive visualizations.

Both the 1st Layer GUI and FVT are deployed in a docker-compose setup, consisting of a front-end
module, which represents the main GUI of the system built on an Angular-based framework, and a back-
end & middleware module based on NodeJS. The back-end & middleware component facilitates data
communication, analytics, and statistics generation, while the web server (nginx) ensures seamless
access to the interfaces. This combination of front-end, back-end, and middleware components enables
efficient querying, data composition, and user authentication within the HEIR ecosystem.

5.1.1.1.1 Prerequisites
Before installing and deploying the 1st Layer GUI and FVT, make sure you have the following pre-
requisites:

• Docker & Docker Compose: Ensure that Docker and Docker Compose are installed on your
host machine. You can refer to the official Docker Compose reference site for detailed
instructions on installation and usage.

Internet access is also required for the installation process.

5.1.1.1.2 Pre-installation Tasks
Ensure that the necessary dependencies and services are accessible. Specifically, ensure that the HEIR's
databases, such as ElasticSearch, are reachable through a specific URI.

5.1.1.1.3 Installation procedure
To install the 1st Layer GUI and FVT, follow these steps:

1. Acquire the necessary configuration files, including the docker-compose.yaml file and two
config files for the web server (nginx). These files contain essential environment variables and
settings for the installation.

2. Edit the docker-compose.yaml file and input the specific environment variables, such as the
preferred exposed URL of the platform, available ports on your host machine for
communication, and the URI for the HEIR Observatory's database (ElasticSearch). Similarly,
update the nginx config files with the corresponding URLs and ports.

3. Transfer these files to the desired directory on your host machine. Open a terminal, navigate to
the specified directory, and run the command "$ docker-compose up -d" to initiate the
installation. The required images (frontend, backend, middleware, and web server) will be
automatically downloaded from the HEIR's Docker Hub account.

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 20 / 69

5.1.1.1.4 Post-installation
After the installation is complete, you can access the 1st Layer GUI and FVT through a web browser.
Enter the exposed URL in the browser's address bar to access the GUI and start exploring the features
and functionalities.

5.1.1.1.5 Update procedure
If updates are available and you are notified by the HEIR's admin team, follow these steps to update the
system:

1. Stop the running containers by running the command "$ docker-compose down".
2. Update the images' version information in the docker-compose.yaml file with the newer

versions provided.
3. Run the command "$ docker-compose up -d" to restart the containers with the updated versions.

The updates will be automatically incorporated into the system.
Note: It is recommended to clear the cache of both the Docker containers and your internet browser after
performing any update actions.

5.1.1.1.6 Uninstall or Roll-back procedure
To uninstall or roll back to previous versions of the 1st Layer GUI and FVT, follow these steps:

1. Update the docker-compose.yaml file's image text fields with the desired previous versions.
2. Repeat the update procedure by running the command "$ docker-compose up -d" to restart the

containers with the specified previous versions.
If you want to remove the containers entirely, stop them by running the command "$ docker-compose
down" and then remove them with the command "$ docker-compose rm".

Note: It is recommended to clear the cache of both the Docker containers and your internet browser after
performing any uninstall or roll-back actions.

5.1.1.1.7 Technical Tests
Adequate testing prior and after release to production is necessary to check not only functional aspects
of the delivery but also not-functional ones.

Some tests might need to be performed before or after deployment of the software component, especially
in cases when direct integration with other components is required.

5.1.1.2 User manual

5.1.1.2.1 Introduction
This User Manual (UM) provides comprehensive information on both the First Layer GUI (Graphical
User Interface) and the Forensics Visualization Toolkit (FVT) of the HEIR ecosystem. The First Layer
GUI is the main visualization dashboard for authorized users inside their organization, which provides
organization’s overall security awareness by displaying aggregated security indicators, metrics and
relevant outcomes of HEIR’s main components. The FVT offers a detailed representation of
departmental and device specific security events & alerts, captured by HEIR’s sub-modules. Via FVT,
security experts can do forensics investigations and further analyze abnormal insights. The manual is
designed to help non-technical users effectively utilize these components of the HEIR system.

The First Layer GUI can be accessed within the organization's environment and serves as the HEIR's
entry point for authorized users. It is a web application that provides advanced and interactive
visualizations, empowering users with valuable insights into the organization's security landscape. With
a user-friendly interface, the First Layer GUI offers key features such as key insights and statistics,
enabling users to gain a comprehensive understanding of the organization's security status. Users can
explore metrics and indicators, track performance, and identify potential vulnerabilities. Additionally,
the First Layer GUI facilitates comparison with global indicators, providing a broader context for
benchmarking security measures against industry standards. Furthermore, users can leverage auditing

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 21 / 69

observation options, allowing them to delve into historical logs and events, aiding in incident analysis
and proactive security management.
The FVT, an integral component of the HEIR system, is an advanced visualization toolkit accessible
through the First Layer GUI. It caters specifically to authorized security experts, empowering them to
delve deeper into security events, alerts, and detailed incidents within their respective departments and
monitored devices. The FVT provides a rich set of functionalities for detailed investigation and analysis.
Security experts can drill down into specific departments, explore timelines, charts, and other interactive
visualizations, and filter data based on various criteria. With the FVT, users can gain comprehensive
insights into security incidents, identify patterns, and respond effectively to potential threats. Leveraging
its powerful visualization capabilities, the FVT facilitates data-driven decision-making and enhances
incident response strategies.
Both the First Layer GUI and the FVT are web applications built using modern technologies.

5.1.1.2.2 Getting Started
1. Access the System:

a. Request from the system administrator to create a valid user-account based on your role.
(e.g., regulator, researcher etc.)

b. Open a web browser and enter the URL provided by your system administrator.
c. The login page will be displayed. Enter your credentials and click "Login" to access the

system (Figure 3).

Figure 3: Login Screen

2. Dashboard Overview:
The First Layer GUI dashboard provides a comprehensive overview of security-related
information regarding both the hospital and the connected departments. It offers meaningful
metrics presentation, auditing insights observation and comparison with Global indicators
capabilities (HEIR Observatory live data fetching) (Figure 4).
Security analysts can access the FVT through the dashboard for detailed departmental and
device-specific investigations. The FVT offers security-relevant information, including ML

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 22 / 69

outcomes, SIEM reports, and RAMA score metadata. It provides analysts with tools to
investigate potential security incidents and identify vulnerable areas across their system.

Figure 4: Complete page of HEIR Client GUI

a. Local and Global RAMA scores:
On the upper part of the screen, users are able to see the aggregated RAMA scores,
including RAMA, Base, and Temporal scores, as well as general information about the
hospital's security status. On the right side of the panel, there are average statistical data
and indicators for the Global RAMA Score, which are obtained from the Observatory.
(Figure 5)

Figure 5: Local and Global RAMA scores

b. RAMA Infographics:

The ‘RAMA Indicators & Scores’ provides a brief overview of the modules involved
in the computation of RAMA scores, accompanied by their corresponding value
indicators, is presented in Figure 11.
Moreover, the ‘RAMA Infographics’ section features a multi-series line chart that

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 23 / 69

visually represents the progression of aggregated scores over time. This visual aid
enhances user awareness and facilitates better monitoring of score fluctuations and
variations (Figure 6)

Figure 6: RAMA infographics

c. Generic Statistics:

The metadata provided by the HEIR Aggregator encompasses valuable information
regarding the embedded modules (HEIR facilitators) of the HEIR Clients across
hospital. The displayed security insights include identified vulnerabilities in
applications and operating systems, captured network malicious events, active
misconfigurations, and results from event analysis tools, among others.
Furthermore, the section presents the top 10 vulnerabilities, accompanied by a graphical
representation that illustrates the order by severity in the upper section and by frequency
in the lower section. This allows users to have a comprehensive overview of the most
critical security risks within the organization (Figure 7)

Figure 7: Generic Statistics

d. Connected Clients:

Towards the bottom of the page, users have the ability to review the connected
departments, which are additional HEIR Clients within the hospital. A concise summary
of relevant information is presented, providing an overview of each connected
department. Users also have the option to delve deeper into a selected department by
clicking the 'Open' button. This grants them access to the home page of the FVT, where

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 24 / 69

they can explore detailed security-related data, investigate specific incidents, and gain
deeper insights into the department's security status (Figure 8).

Figure 8: Connected Clients

3. Audit History:

Authorized auditors can access the Audit History screen, which is a navigation option at the top
panel menu, where events are presented in both temporal and tabular representations. In the
timeline, a hover functionality has been implemented, allowing users to hover over events and
view additional information about each one.

4. Logout:
Users are able to logout by clicking the “Logout” button placed on the top-right corner of the
page, under the displayed username.

5. FVT:
This toolkit provides a detailed representation of security events captured by the SIEM sub-
module and processed by the ML Anomaly Detection Module. By utilizing the FVT, authorized
users can investigate connected HEIR Clients and gain department-specific insights. This
section will guide you through the main analysis dashboard, timeline visualization, event details,
and line charts for device metrics.

a. Overview & Devices

In this screen, security experts can view the RAMA score, along with relevant metadata
from the facilitators, similar to the First Layer GUI. However, this information refers
specifically to the department that the user is examining (Figure 9).

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 25 / 69

Figure 9: Overview & Devices

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 26 / 69

Additionally, at the bottom of the screen, security experts can access the main analysis
dashboard of the FVT by clicking the ‘Inspect’ button on any devices that is listed in the
Connected Devices section (Figure 10).

Figure 10: Connected Devices

b. Analysis Dashboard:

In the ‘Analysis Dashboard’ screen, which is the main screen of the FVT, security
experts can explore captured events and performance metrics specific to the device

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 27 / 69

they are inspecting, allowing for in-depth investigation of the selected device through
several visualization widgets (Figure 11).

Figure 11: Analysis Dashboard

c. Events Analysis:

In the 'Events Analysis' screen, accessible through FVT's navigation options, security
experts can view events detected by the SIEM and ML component. These events,
which are related to all the devices, are presented in both temporal and tabular
representations. The screen also offers various functionalities, including filtering

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 28 / 69

capabilities, color-coded schemas, and the ability to select specific timeframes for
detailed investigation (Figure 12).

Figure 12: Event Analysis

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 29 / 69

5.1.1.2.2.1 Cautions & Warnings
Unauthorized Access Prohibited

Both the First Layer GUI and the FVT are web applications intended for authorized use only. Any
unauthorized access or attempts to breach the system's security are strictly prohibited and may result in
legal action. Users are responsible for ensuring the confidentiality and integrity of their login credentials
and must not share them with anyone.

5.1.1.2.2.2 Set-up Considerations
To access both the First Layer GUI and the FVT, you will need a computer or device with internet
connectivity. There is no need for any specialized equipment or network configurations. Simply ensure
that you have a working internet connection and a web browser installed.

5.1.1.2.2.3 User Access Considerations
The system distinguishes between two user groups: security experts and hospital’s auditors.

1. Security experts:
Authorized users can access the main page of the First Layer GUI, which includes a range of
widgets and graphs, and they can also use the FVT for more detailed investigations.

2. Hospital’s auditors:
Hospital’s auditors have can access the Audit History tab, where they can examine logs of
activities performed by other components within the HEIR system.

5.1.1.2.2.4 Accessing the System
The FVT and First Layer GUI are accessible exclusively to authorized hospital staff with appropriate
credentials. Furthermore, access to both applications is limited to within the hospital premises.

5.1.1.2.2.5 System Organization & Navigation
The HEIR’s First Layer GUI and the FVT are thoughtfully organized and designed to provide users with
intuitive navigation and seamless access to its various screens and functionalities. The system’s main
organization is implemented through the navigation panels. Below, you will find a short description of
the navigation options.

First Layer GUI

1. Main Dashboard
Upon successful login, users are landed into the main dashboard of First layer GUI. (see
“Getting Started” section)

2. Audit History Screen
Hospital’s auditors can navigate to the audit history screen from the First Layer GUI. This
screen provides a comprehensive view of the audit logs and data requests, provided by the
Privacy Aware Framework of HEIR. Users can delve into the detailed logs to understand past
events and user actions within the system. The audit history screen ensures transparency and
accountability, allowing authorized users to review and monitor the full set of details, while
user-roles with limited permissions to review and monitor PII redacted information.

FVT

1. Overview & Devices
By clicking the ‘Open’ button on any Connected Device listed at the bottom of the Main
Dashboard, the user gains access to the FVT. The first screen that appears is the Overview &
Devices screen, where detailed information about the specific department is displayed (see
“Getting Started” section).

2. Analysis Dashboard
In this screen, users can examine events and metrics specific to the device they are inspecting

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 30 / 69

(see “Getting Started” section).

Events Analysis

The ‘Events Analysis’ screen allows security experts to view events detected by the SIEM and ML
component. For more information about this screen, see “Getting Started” section.

5.1.1.2.2.6 Exiting the System
To properly exit the First Layer GUI, you can simply log out from the system and close the web browser.
It is important to log out to ensure the security of your account and prevent unauthorized access.

5.1.1.2.3 Using the System

In this section, we will delve into the functionalities and features of both the First Layer GUI and the
FVT, providing non-technical users with an understanding of how to effectively navigate and leverage
these tools for security analysis and investigation.

5.1.1.2.3.1 First Layer GUI
This section provides a comprehensive guide on how to effectively utilize the features and
functions available within the First Layer GUI. Whether you are a simple user or an authorized
user, the following instructions will help you navigate through the system and make the most
out of its capabilities (Figure 13).

5.1.1.2.3.1.1 Changing Date and Time Filter
Within the First Layer GUI, you can adjust the visualized period in RAMA scores evolution histogram
by adjusting the date and time filter above the chart. This feature allows you to focus on specific periods
of interest and gain insights into the evolving security landscape over time.

5.1.1.2.3.1.2 Comparing Local and Global RAMA Scores metadata

End-users have the ability to compare their organization's RAMA scores and metadata with the ones
calculated inside the HEIR Observatory. The RAMA score serves as an indicator of the security level
within the specific hospital. By enabling the toggle button placed next to the Global RAMA score
indicator (located in the top-right corner of the screen), you can initiate a comparative analysis.

Enabling this feature unlocks the capability to juxtapose your hospital's aggregated insights, including
RAMA scores and corresponding metadata, with the global ones derived from the Observatory. This
comparative analysis provides the ability to identify common vulnerabilities/ security findings between
your environment and the broader healthcare domain (region-wise).

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 31 / 69

Figure 13: Complete page of First Layer GUI

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 32 / 69

5.1.1.2.3.2 Forensics Visualization Toolkit (FVT)

This section provides a comprehensive guide on how to effectively utilize the features and functions
available within the FVT. Whether you are a simple user or an authorized user, the following instructions
will help you navigate through the system and make the most out of its capabilities.

5.1.1.2.3.2.1 Overview & Devices

5.1.1.2.3.2.1.1 Top 10 Vulnerabilities
In the Overview & Devices Screen, users can access a list of the top 10 vulnerabilities of the department.
Each vulnerability is clickable, allowing users to obtain more detailed information about them from
reputable sources like MITRE.

5.1.1.2.3.2.1.2 Sort and Filter Functionality
This screen provides a user-friendly sorting and filtering functionality for the tabular representation
widget. Users can easily sort the table by any column to organize data in their preferred order.
Additionally, they can filter the table by typing specific information at the top side of the widget,
allowing them to quickly find relevant data (Figure 14).

Figure 14: Overview & Devices - functionalities

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 33 / 69

5.1.1.2.3.2.2 Analysis Dashboard

5.1.1.2.3.2.2.1 Filtering by Date and Time
One of the key features of the “Analysis Dashboard” screen is the ability to filter events based on a
specific date and time. By adjusting the filter, users can focus on events within a particular timeframe,
allowing for a time-wise targeted analysis of security events.

5.1.1.2.3.2.2.2 Filtering by Severity
This screen also provides the option to filter events based on their severity. Users can prioritize events
of higher severity, enabling them to quickly identify and investigate potential security risks or critical
incidents.

5.1.1.2.3.2.2.3 Comprehensive Analysis Dashboard
The “Analysis Dashboard” within the FVT offers a set of widgets that provide different types of
visualizations, covering system metrics and network-related information. These widgets can be
customized and rearranged to cater to the investigation needs of the user.

5.1.1.2.3.2.2.4 Timeline Visualization
A timeline widget is also included, that offers a temporal representation of incoming logged events.
Users can interact with the timeline, adjusting the range period to synchronize and update other widgets
accordingly. Additionally, the timeline widget allows for annotations and adaptive visualization of
events based on the volume of data.

5.1.1.2.3.2.2.5 Event Details
For a more detailed understanding of specific events, a details widget is provided. This widget presents
comprehensive information about incoming events and supports text filtering capabilities, enabling
users to search and locate specific information of interest.

5.1.1.2.3.2.2.6 Performance Metrics Line charts
The specific screen offers a valuable functionality where users can view performance metrics related to
the specific device they are inspecting, presented in synchronized line charts. These line charts provide
insights into various data points over time. Users can interact with the line charts by hovering over a
line, which allows them to see detailed information for a particular date and time. As they hover over a
line of a line chart, all other line charts on the dashboard automatically display information for the same
specific date and time, providing a comprehensive and synchronized view of the device's performance
metrics (Figure 15).

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 34 / 69

Figure 15: Analysis Dashboard

5.1.1.2.3.2.3 Events Analysis

5.1.1.2.3.2.3.1 Filtering by Date and Time

This functionality allows users to filter events based on a specific date and time range.

5.1.1.2.3.2.3.2 Filtering by Severity
Users can filter events by severity in this screen to prioritize and investigate security incidents
effectively.

5.1.1.2.3.2.3.3 Filtering by Devices

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 35 / 69

Users can filter events based on specific devices or equipment within the selected department. This
functionality allows for a more granular analysis, focusing on events related to a particular device or
group of devices.

5.1.1.2.3.2.3.4 Filtering ML Events
The “Events Analysis” screen incorporates machine learning capabilities, which enable the
identification of anomalous events. Users can filter events specifically flagged by the ML Anomaly
Detection Module, helping to pinpoint potential security breaches or irregular activities.

5.1.1.2.3.2.3.5 Comprehensive Analysis Dashboard
In this screen, we encounter once again the feature of a set of widgets that provide various visualizations
and also can be customized and rearranged.

5.1.1.2.3.2.3.6 Timeline Visualization
In the Events Analysis screen, we can find again the functionality of the timeline widget.

5.1.1.2.3.2.3.7 Event Details
The functionality of a details widgets it is implemented in this screen too (Figure 16).

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 36 / 69

Figure 16: Event Analysis

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 37 / 69

5.1.2 HEIR Machine Learning (ML)-based Anomaly Detection & Threat Classification
module

This module provides efficient event and threat data classification based on specific rules related to
cyber security requirements and cyber-threats level of criticality and novel machine-learning (ML)
models. In particular, adaptations of existing ML models utilized in anomaly detection and/or threat
classification are incorporated, which match the requirements of the health systems. The ML module
takes the input from HEIR IoT (Logs) and processes the records to differentiate between anomalies and
non-anomalies. After that, the ML component processes the results in a detailed report. The result is
visualized in the FVT toolkit to represent the results tangibly.

The selected model/algorithm based on supervised/ unsupervised learning algorithms depends on the
use case (PAGNI, CROYDON). Each use case has its own model which was built to suit the data
structure and classify the anomalies in a good order. Both use cases are explained below in details.

5.1.2.1 Installation guide

The machine learning component is being hosted in the docker for each use case. The resulting outcome
is being pushed from HEIR VM to Elastic-Engine platform where the FVT (first layer GUI) is depicting
the results. The model for both cases is already trained and deployed.

The table below represents both the input used for PAGNI/CUH and the machine learning output to post
the results in a tangible way using the FVT toolkit.

Module interfaces
Input

Name Type Short Description
HEIR LOG SQL, CSV (provided by

the partners)
SQL log was provided, and it was changed into
CSV format in order to be processed within the

ML component.
The PAGNI file contains (id, user, hospital,

department, role, action, caseID, vpn, datetime)
The CUH file contains (id, CTGId, FHR1,

FHR2, FHR3, TOCO, MHR, Status,
LastModified)

Output
Name Type Description

ML output for PAGNI JSON (provided by
machine learning

component)

JSON file was generated as an outcome from ML
component to be used in AEGIS side by creating

UI tile like SIEM. The file contains (id, user,
hospital, department, role, action, caseID, VPN,

datetime and Anomaly) + ML score in the
bottom of the JSON format. For Instance (from

one use Case):
{"id": "100000",
"user": "1188",
"hospital": "2",

"department": "102",
"role": "Doctor",

"action": "Nursing instructions",
"caseID": "2051641978",

"vpn": "0",
"datetime": "2016-01-27 22:12:25",

"Anomaly": "NO"}

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 38 / 69

ML output for CROYDON JSON (provided by
machine learning

component)

JSON file was generated as an outcome from ML
component to be used in AEGIS side by creating
UI tile like SIEM. The file contains (id, CTGId,

FHR1, FHR2, FHR3, TOCO, MHR, Status,
LastModified and Anomaly) + ML score in the
bottom of the JSON format. For Instance (from

one use Case):
{"Anomaly": "NO",

“Signal”:[{
"id": "100000",

"CTGId": "1188",
"FHR1": "698",
"FHR2": "699",
"FHR3": "699",
"TOCO": "21",
"MHR": "388",
"Status": "0",

"LastModified": "2016-01-27 22:12:25"},
{ "id": "100001",
"CTGId": "1189",
"FHR1": "698",
"FHR2": "698",
"FHR3": "698",
"TOCO": "20",
"MHR": "387",
"Status": "0",

"LastModified": "2016-01-27 22:12:25"}]}

5.1.2.2 User manual

The user does not have direct communication with the ML component. More specifically, the output of
the ML component is made available to the user through HEIR’s 1st Layer GUI.

5.1.3 Blockchain-based Privacy-Aware Framework (PAF)
5.1.3.1 Privacy Aware Framework (PAF)

The HEIR Privacy Aware Framework (PAF) allows for policy-driven control access to stored data. Built
on top of the Fybrik Open Source platform, the Privacy Aware Framework may need to modify a number
of files from the github Fybrik distribution according to the use case. In particular, modifications may
be required to the:

• Fybrik Application yaml
• Fybrik Module yaml
• Rego policy definition
• The executable Fybrik module code (Python code)

5.1.3.1.1 Installation manual
Fybrik is installed based on the directions found in Quick Start. There are a large number of example
implementation to show how to modify the files mentioned above found in:
https://github.com/orgs/fybrik/repositories including an implementation used for third party data export
in the Norwegian healthcare use case (https://github.com/fybrik/REST-read-example).

Extensive documentation describing the various Fybrik Custom Resource Definitions (CRDs) can be
found at: https://fybrik.io/v1.3/reference/crds/

5.1.3.1.1.1 Prerequisites
Fybrik and the Privacy Aware Framework run on top of Kubernetes. We have used kind to implement
our Kubernetes cluster, however other Kubernetes frameworks should work as well.

https://fybrik.io/v1.3/get-started/quickstart/
https://github.com/orgs/fybrik/repositories
https://github.com/fybrik/REST-read-example
https://fybrik.io/v1.3/reference/crds/
https://kind.sigs.k8s.io/
https://fybrik.io/v1.3/get-started/quickstart/
https://github.com/orgs/fybrik/repositories
https://github.com/fybrik/REST-read-example
https://fybrik.io/v1.3/reference/crds/
https://kind.sigs.k8s.io/

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 39 / 69

5.1.3.1.1.2 Pre-installation Tasks
N/A

5.1.3.1.1.3 Installation procedure
Steps to install Fybrik are explicitly given in https://fybrik.io/v1.3/get-started/quickstart/. Modifications
to the Privacy Aware Framework YAML files required to implement use case specific scenarios are
applied using standard Kubernetes methodology, e.g. kubectl apply -f <YAML file name>.

An example PAF implementation for reading and redacting information from a backend healthcare
FHIR server can be found in: https://github.com/fybrik/REST-read-example.

5.1.3.1.1.4 Post-installation
All Control Plane PAF Kubernetes resources are installed in the fybrik-system namespace. After
installation of Fybrik, one should check to make sure that all components in this namespace have been
deployed, using standard Kubernetes commands, e.g.

 kubectl get all -n fybrik-system

All pods should be deployed and in the running state. Output from the execution of code inside a pod
can be viewed by using the following command:

 kubectl logs <PODNAME> -n <namespace where the pod is executing>

5.1.3.1.1.5 Update procedure
The distributed Fybrik framework is stable, and it is not expected to be updated.

5.1.3.1.1.6 Uninstall or Roll-back procedure
Rollback of installed PAF YAML files follow the standard Kubernetes practice, e.g.:

kubectl delete -f <YAML file name>

In the event of a catastrophic corruption of the Fybrik framework or the Kubernetes cluster, the best
recovery method is to delete the Kubernetes cluster, regenerate it and reapply Fybrik and PAF files.

5.1.3.1.1.7 Technical Tests
Once configured, the Privacy Aware Framework will automatically deploy a data path workload in the
namespace specified in the Fybrik Application YAML file. Successful installation of a PAF
configuration can be easily checked by verifying if an executing Kubernetes pod appears in this
namespace.

In the event that the data path fails to deploy, standard Kubernetes debugging techniques, such as
checking the log files in the fybrik-system namespace will need to be applied.

5.1.3.1.2 User manual

5.1.3.1.2.1 Introduction
At a high level, the Privacy Aware Framework uses policy, data schema classification and information
relating to the data request (e.g., Requester name, Role, Organization …) to determine what
transformations may need to be applied to fields in the requested data source.

Essentially the Privacy Aware Framework comes between the data requester and the data store and
mediates the requests that are allowed to pass through to the backend, as well as data which is allowed
to flow out.

Configuration of the PAF is done through human-readable YAML files, whereas the policy definition
language is written in the Rego language used by the Open Policy Agent which serves as a Policy
Decision Engine.

https://fybrik.io/v1.3/get-started/quickstart/
https://github.com/fybrik/REST-read-example
https://www.openpolicyagent.org/
https://fybrik.io/v1.3/get-started/quickstart/
https://github.com/fybrik/REST-read-example
https://www.openpolicyagent.org/

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 40 / 69

Request related parameters (e.g. user, role…) are encoded in a certificate (JWT) which are typically
supplied to the PAF from an external identity management system, such as Keycloak.

The actual transformations supplied to the data are programmable and provided by the Fybrik module.
Typically the Open Source examples in the Fybrik github repo (http://github.com/fybrik) implement
redaction (masking) or deletion of columns containing Personal Identifiable Information (PII).

5.1.3.1.2.2 Getting Started

The Privacy Aware Framework (PAF) utilizes Kubernetes to provide a locked-down, secured
environment and conceptually exists between the data requester and the data source. This can be seen
in Figure 17.

In this example, Keycloak is an Identity Management (IM) system used to produce a JSON Web Token
(JWT) which accompanies every REST request for FHIR data. The JWT authenticates the user and
encodes data such as user, role, organization, which will be used by the PAF Policy Engine to determine
what data transformations may be required on the returned data. The implementation of IM is outside
of the scope of the Privacy Aware Framework.

Figure 17: The Privacy Aware Framework Conceptual Architecture

5.1.3.1.2.2.1 Cautions & Warnings

The Privacy Aware Framework and Fybrik are released under the Apache 2.0 license.

5.1.3.1.2.2.2 Set-up Considerations
A Kubernetes cluster needs to be present before installing the Privacy Aware Framework following the
instructions in https://fybrik.io/v1.3/get-started/quickstart/. This can be done following the directions
found in: https://kind.sigs.k8s.io/. It is recommended that a dedicated cluster be set up for the Privacy
Aware Framework.

In Figure 17, the FHIR server, representing the hospital’s data store, is shown running inside of the
same Kubernetes cluster as the PAF. This is one way of guaranteeing that all data requests must go
through the Privacy Aware Framework via the Ingress Gateway. However, it is possible to configure a
PAF solution keeping the data store outside of the Kubernetes cluster. In this case, the data store needs
to be password-protected, and the access credentials to the data store reside in PAF as Kubernetes
secrets, rather than made available to individual data requesters.

https://jwt.io/
https://www.keycloak.org/
http://github.com/fybrik
https://fybrik.io/v1.3/get-started/quickstart/
https://kind.sigs.k8s.io/
https://jwt.io/
https://www.keycloak.org/
http://github.com/fybrik
https://fybrik.io/v1.3/get-started/quickstart/
https://kind.sigs.k8s.io/

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 41 / 69

5.1.3.1.2.2.3 User Access Considerations
Requests for data are issued as REST commands and need to be accompanied by a JWT in the header
of the request. The Privacy Aware Framework will determine whether or not a user can the stored data
based on an evaluation of the identifying parameters in the JWT and the access policy defined for the
PAF.

5.1.3.1.2.2.4 Accessing the System
As discussed, a JWT needs to identify each request to the PAF. Typically, the JWT will be produced
by an Identity Management system. The details and implementation of this are outside the scope of
PAF.

5.1.3.1.2.2.5 System Organization & Navigation
Detailed explanations of the Fybrik, which is the framework upon with the PAF is built, can be found
in the extensive documentation in: https://fybrik.io/v1.3/reference/crds/

5.1.3.1.2.2.6 Exiting the System
The Privacy Aware Framework, once installed, will stay up and configured for as long as its services
are required. The easiest way to totally remove PAF and all of its artifacts would be to delete the
Kubernetes clusters upon which it was installed.

5.1.3.1.2.3 Using the System

Once configured, it is expected that only the data policy access could potentially change as a result of
new legislation or internal policy. The policy (or, to be more exact, a list of rules), is defined in the
Rego language as described in https://www.openpolicyagent.org/docs/latest/policy-language/.

5.1.3.1.2.3.1 Changing the data protection policy
To change the data protection policy, the original Rego file with the policy definitions needs to be
modified. Once done, this file needs to be reapplied. If the PAF implemented was created following
one of the examples found in the github repo (e.g. https://github.com/fybrik/REST-read-example), then
simply reapply the updated Rego YAML file, following the original installation directions. For
example, for the REST read example cited above, this would be to simply execute the script,
applyPolicy.sh.

5.1.3.2 Blockchain – based Auditing Mechanism

The auditing mechanism stores all these data access requests performed by users, regardless of whether
the requests were eventually authorized or not by the Privacy Aware Framework. Storing these access
requests, along with their metadata, the goal of the Auditing mechanism is to provide:

• An immutable record of all data access attempts
• A filtering mechanism to identify malicious unauthorized access attempts on a regular (daily,

weekly, monthly etc) basis
• A timeline of events in the form of abnormal data access requests, facilitating the trace of

malicious user behaviours back in time. This timeline could be used in conjunction with the
HEIR threat detection modules, as complementary contextual data.

The Auditing mechanism developed is based on Hyperledger Fabric7, a well-known and enterprise
mature framework used for the development of permissioned blockchain applications. The Fabric
executes distributed applications written in general purpose programming languages across a few peer
nodes, allowing for both isolated, single-organization isolated ledgers, or cross-organization auditing.
While the Auditing mechanism is equipped with server-side client applications that provide a REST
API, integration with the Privacy Aware Framework is currently achieved via a dedicated Kafka topic,
where all access logs are transmitted. The smart contract that defines the logic of the blockchain’s

7 https://hyperledger-fabric.readthedocs.io/en/release-2.5/

https://fybrik.io/v1.3/reference/crds/
https://www.openpolicyagent.org/docs/latest/policy-language/
https://github.com/fybrik/REST-read-example
https://hyperledger-fabric.readthedocs.io/en/release-2.5/
https://fybrik.io/v1.3/reference/crds/
https://www.openpolicyagent.org/docs/latest/policy-language/
https://github.com/fybrik/REST-read-example

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 42 / 69

transactions is written in Java, while the REST API exposing the creation and filtering capabilities of
the smart contract is a Spring Boot application written in Java.

5.1.3.2.1 Installation manual

5.1.3.2.1.1 Prerequisites
Hyperledger Fabric clearly defines the prerequisites required to install and test a docker-based network8.
In addition, the blockchain-based auditing mechanism is containerised using Docker. Thus, the
prerequisites are defined as follows:

• Git: Install git on your machine to be able to clone Hyperledger Fabric github project that
contains all the required Docker images, binaries and testing samples.

• Docker: Install Docker on your machine. Docker provides a platform for containerization,
allowing you to run applications in isolated environments.

• Docker Compose: Install Docker Compose, which is a tool used to define and run multi-
container Docker applications. Docker Compose will be sed for the local, standalone installation
and deployment of the Auditing mechanism

• cURL (optional): Install cURL as a helpful step towards the retrieval of all Hyperledger Fabric’s
components required to set up a blockchain network.

The provided docker-compose incorporates:

• The image per blockchain component (retrieved through WELLICS Gitlab Repository)
• A CouchDB database to store and retrieve the incoming logs.

It should be noted that the auditing mechanism is not a stand-alone component of HEIR, but it is part of
PAF framework. In order to be properly installed, an installation of PAF and a dedicated Kubernetes
cluster should be present in the system. For the integration with PAF in a Kubernetes environment (as
is the case in the NSE pilot), Kubernetes configuration files have been created. While the majority of
the present manual is for local, docker based deployment of the blockchain component itself, the
available developed Kubernetes configuration files, make the deployment in such an environment a
really simple task.

5.1.3.2.1.2 Pre-installation tasks
After the installation of the prerequisites, the following steps should be followed:

• Clone Hyperledger Fabric latest update from the project’s Github repository9. This step sets up
the environment by downloading the latest Hyperledger Fabric Docker images and, most
importantly, by downloading the binary files required to set up a blockchain network.

• Retrieve the Docker images compiled by WELLICS. These images are tailored to the needs of
the auditing mechanism and its specific requirements per blockchain’s component.

The auditing mechanism is part of PAF framework, but its installation can be completed and tested
independently of its integration with PAF with dummy data that resemble the expected income log from
PAF framework. The integration with PAF is completed via Kubernetes and the interconnection between
the two components is achieved via a dedicated Kafka network.

The developed Kubernetes configuration yaml files contain all the necessary configuration parameters
so that the Auditing mechanism component is deployed, its API exposed internally to the Kubernetes
cluster and integrated internally with the PAF.

5.1.3.2.1.3 Installation procedure (Docker based)

8 https://hyperledger-fabric.readthedocs.io/en/release-2.5/prereqs.html
9 https://github.com/hyperledger/fabric-samples

https://hyperledger-fabric.readthedocs.io/en/release-2.5/prereqs.html
https://github.com/hyperledger/fabric-samples

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 43 / 69

Once all prerequisite checks and controls are positively finished, the install process can start. The
installation is as follows:

• Login to WELLICS Gitlab Container registry to be able to download the latest images of the
blockchain’s components.

• Start the Docker Containers: Use the docker-compose up command to start the Docker
containers defined in the Docker Compose file. Docker Compose will pull the necessary images,
create the containers, and wire them together based on the defined configuration.

• Install chaincode/smart contract on the network: Use the docker-compose-tools.yml file to
install the smart contract that incorporates the transactions’ logic. The heir-tools container that
will be created will ensure the installation of the smart contract and the inclusion of a dedicated
container for the chaincode functionalities. After the installation, the heir-tools container will
stop automatically.

5.1.3.2.1.4 Installation procedure (Kubernetes based)
The same principles and order described in the docker based deployment procedure are used
for the Kubernetes deployment of the Auditing mechanism. For the deployment process the
Kubernetes specific yaml configuration files developed are applied in specific order.
The command to apply the yaml files is the following (provided one has command line interface
access to the target Kubernetes cluster):

kubectl apply –f <component_name>.yml

kubectl apply –f <component_name>_svc.yml

The former applies, activates and rolls out each component independently, while the latter
applies the component configuration as a Kubernetes service (along with networking details)

•
• The yaml files for the Orderer node are applied after.
• The yaml files for the peer nodes are applied after.
• The yaml file for the network configuration is then applied. The network configuration is

applied as a a one time run service that manages the Auditing mechanism and underlying
blockchain network configuration (smart contracts installation among other configuration steps)

• The yaml files for the Auditing mechanism Client

All Kubernetes pods can be checked for issues that appear in the respective pods’ logs by issuing the
command:

Kubectl logs –f <pod_name>

5.1.3.2.1.5 Post-installation
Following the successful installation, the end-user will need to perform a docker log inspection to:

• Identify if any exceptions/errors were raised during the initiation of the docker-compose.
• Ensure the correct initialization of the blockchain’s internal network.
• Ensure the correct installation and initialization of the chaincode/smart contract.
• Make sure that the REST API application is running and is connected to Kafka network.

After the inspection of the logs, the user should connect to API’s swagger user interface to inspect the
correct display of the various endpoints created by the application and perform a test via dedicated test
endpoints to inspect the procedure of storing and retrieving a log.

5.1.3.2.1.6 Update procedure

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 44 / 69

Updates on the auditing mechanism are being driven by the project requirements. More specifically,
WELLICS is responsible to update the components and make them available to its Gitlab Container
Registry. Upon update, an e-mail is sent notifying users about the need to pull the newest image.

If a major update occurs, the user is responsible for backup the database and the current deployment.

5.1.3.2.1.7 Uninstall or Roll-back procedure
The auditing mechanism is part of PAF framework, permitting its uncorrupted functionality. Though, a
formal notification needs to be sent to the Technical Coordinator of PAF’s implementation and the
Technical Coordinator of HEIR, should an end-user wishes to uninstall them from its system. Following
this, the TC will notify the corresponding partner, which, in turn, will be responsible to uninstall the
components.

5.1.3.2.2 User manual

5.1.3.2.2.1 Introduction
The blockchain-based auditing mechanism is responsible for storing all data access requests performed
by users that are caught by PAF framework, regardless of whether the requests were eventually
authorized or not by PAF. The objectives of the auditing mechanism is to provide an immutable record
of all data access requests, filtering mechanisms provided to the auditor in order to analyze and detect
the stored logs and identify patterns of malicious behaviour, and the capability to develop timelines of
events based on various filtering options.

The auditing mechanism is based on the creation of a blockchain network (with the utilization of
Hyperledger Fabric framework), accessible via a dedicated client application developed using Spring
Boot framework. The client application exposes a set of endpoints (API) enabling the end-user to interact
with the storing and, mainly, filtering functionalities of the mechanism, incorporated by a Java-based
smart contract. The client application is provided as an easy-to-use gateway to the logs stored in the
blockchain network, helping the auditor extract useful information and observe the timeline of events.

This manual provides the necessary information for end-users to effectively interact and use the client
application of the auditing mechanism.

5.1.3.2.2.2 Getting Started

5.1.3.2.2.2.1 Cautions & Warnings
Hyperledger Project source code files are made available under the Apache License, Version 2.0
(Apache-2.0).

5.1.3.2.2.2.2 Set-up Considerations
Set-up considerations are thoroughly discussed in the provided Installation manual.

5.1.3.2.2.2.3 User Access Considerations
An end-user can access and interact with the client application as soon as he/she has access to the system
where PAF and the auditing mechanism are installed. The client application provides the option to create
dedicated digital keys for each user, a procedure that requires the approval of an administrator of the
system.

5.1.3.2.2.2.4 Accessing the System
No specific authentication/authorization requirements for accessing the application.

5.1.3.2.2.2.5 System Organization & Navigation
The application has two main functionalities: create (store) a new registration (log) to the blockchain
network and filter (query) the existing logs. The client application is integrated with PAF via a dedicated
Kafka network and topic and constantly listens for new messages. The messages contain extensive logs
of the data access attempts caught by PAF. Specific information fields are retrieved from these messages

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 45 / 69

and form the final log that will be stored in the blockchain via a creation/storing method that utilizes the
Fabric Gateway framework10. The same framework is utilized for the development of various filtering
methods. The storing logs procedure is automated and is based on listening to Kafka messages, while
the filtering methods are exposed via endpoints. All endpoints are available via swagger User Interface
on the installation environment and on port 8081.

5.1.3.2.2.2.6 Exiting the System
The auditing mechanism, as part of the PAF, once installed, will stay up and configured for as long as
its services are required. The easiest way to totally remove PAF and all of its artifacts would be to delete
the Kubernetes clusters upon which it was installed.

5.1.3.2.2.3 Using the System
The usage of the system is described as a set of interactions with the available endpoints that are
presented on the next table:

API reference
Method HTTP request Params Description
GetAllLogs GET

<domain>/queryAllLogs
- Returns the list of the

stored logs
queryExists GET

<domain>/queryExists
Timestamp Returns a boolean value

indicating the existence of
specific log

queryLog GET
<domain>/queryLog

Timestamp Returns specific log

getLogsByRange GET
<domain>/getLogsByRa
nge

startDate, endDate
(yyyy-mm-dd,
yyyy-mm-dd)

Returns the list of the
stored logs for the desired
time range

QueryLogsByID GET
<domain>/queryLogsBy
Id

userID Returns the list of the
stored logs for specific
userID

QueryLogsByInte
nt

GET
<domain>/queryLogsBy
Intent

Intent (analysis,
research,
visualization etc)

Returns the list of the
stored logs for specific
intent

QueryLogsByOut
come

GET
<domain>/queryLogsBy
Query

Query (observation
etc)

Returns the list of the
stored logs for specific
query

QueryLogsByQue
ry

GET
<domain>/queryLogsBy
Outcome

Outcome
(AUTHORIZED or
UNAUTHORIZED
)

Returns the list of the
stored logs for specific
outcome

getLogsByRangeA
ndID

GET
<domain>/getLogsByRa
ngeAndID

startDate, endDate,
userID

Returns the list of the
stored logs for the desired
time range and for specific
userID

getLogsByRangeA
ndOutcome

GET <domain>/
queryLogsByRangeAnd
Outcome

startDate, endDate,
Outcome

Returns the list of the
stored logs for the desired
time range and for specific
outcome

getLogsByRangeA
ndIntent

GET <domain>/
queryLogsByRangeAnd
Intent

startDate, endDate,
Intent

Returns the list of the
stored logs for the desired
time range and for specific
intent

10 https://github.com/hyperledger/fabric-gateway

https://github.com/hyperledger/fabric-gateway

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 46 / 69

API reference
Method HTTP request Params Description
QueryLogsByIDA
ndOutcome

GET <domain>/
queryLogsByIdAndOutc
ome

userID, Outcome Returns the list of the
stored logs for specific
userID and outcome

QueryLogsByIDA
ndIntent

GET <domain>/
queryLogsByIdAndInte
nt

userID, Intent Returns the list of the
stored logs for specific
userID and intent

5.2 HEIR core framework components
5.2.1 HEIR Client’s Processing system (HEIR Client)
5.2.1.1 Installation guide

HEIR Agent is the component providing the TDM, HET and VA modules. It runs periodic scans for
misconfigurations and CVEs. It will also run scans on specific files when triggered, detecting malicious
ones.

5.2.1.1.1 Prerequisites
Pre-requisites for the HEIR Agent to function properly:

• Windows 10 64bit or newer
• A Kafka broker (not necessarily on the same machine)
• A Heirclient instance (not necessarily on the same machine)

Required files, in addition to the installer:

• a `config.json` file
• a `signed.key` file containing the SSL key required by the Kafka broker
• a `signed.pem` file containing the SSL certificate required by the Kafka broker
• a `trusted_authority.cert` file containing the SSL ca required by the Kafka broker

The config.json file required by the HEIR Agent has the following format:
{

 "kafka_broker": "<ip and port of the Kafka broker>",

 "scan_id": "008f4070-154f-11ec-a544-f7bbc18a132a",

 "hospital_address": "<the address of the hospital>",

 "hospital_region": "<the region of the hospital>",

 "clientID": <the id of this client>,

 "hospitalID": <the id of the hospital>,

 "time_betwen_scans_minutes": 40,

 "scan_target": "<absolute path of the folder that will be monitored for malware files by TDM>"

}

5.2.1.1.2 Pre-installation tasks
N/A

5.2.1.1.3 Installation procedure
Once all prerequisite checks and controls are positively finished, the install process can start.

First, we should prepare our configurations by creating the following folder: C:\Program Files\HEIR
Project\HEIR Agent. Inside this folder place your configuration file and SSL key, certificate and ca files.

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 47 / 69

Figure 18: Required files for HEIR agent installation

Next, we shall run the installer. Double click the MSI installer to run it.

Figure 19: HEIR agent installer

The installer will start and prompt you to continue.

Figure 20: First window of installation procedure

Next, it will prompt you to start the install process. This step will require administrator privileges.

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 48 / 69

Figure 21: Second window of installation procedure - the user should press install button to continue

In the next step the installer will launch the HEIR Agent service. We recommend you leave the option
ticked, otherwise you will have to launch the process manually.

Figure 22: End of installation procedure. The HEIR agent has been successfully installed

Now, the HEIR Agent should be installed and running.

5.2.1.1.4 Post-installation

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 49 / 69

To verify that the application is running properly we can do the following checks:

1. Check that the HEIR Agent service is running. To do this open the Services app and look for
the BDHeirAgentService. It’s status should be: Running.

Figure 23: Checking HEIR agent service status

2. Check that the temporary files have been created. To do this go to the installation folder and
look for the BDHeirAgentLog.log file. If it is present the application started correctly.

Figure 24: Checking the creation of temporary files in BDHeirAgentLog.log file

5.2.1.1.5 Update procedure
To update the HEIR Agent, you will have to uninstall the program by going through the steps outlined
in the Uninstall or Roll-back procedure. After that you can proceed with the Installation procedure
using the updated MSI installer.

5.2.1.1.6 Uninstall or Roll-back procedure

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 50 / 69

If you want to uninstall the HEIR Agent, either for good or just to re-install a newer/older version the
procedure is the same. Start by going to the Control Panel:

Figure 25: Access control panel

And open the Uninstall a program page under Programs.

Figure 26: Uninstall or change a program panel - find HEIR agent program

In the list of installed programs look for HEIR Agent, right click and press Uninstall.

This will open an Uninstall Wizard that will stop the service and delete most of the files added by the
installer.

If you go to the install folder, you will see that only the files added in the first install step and a few
temporary files are left.

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 51 / 69

Figure 27: Verification of HEIR agent successful uninstall

If you want to delete the program for good, you can delete these manually. If you plan on re-installing
the agent, they can be left in place.

5.2.1.2 User manual

N/A

5.2.2 Local and Global RAMA Score Calculator
5.2.2.1 Installation guide

Both the Local and the Global RAMA score calculators are software components that were written in
Java, using the Spring Boot framework. The Local RAMA score calculator is responsible to
communicate with the HEIR client, calculate the local RAMA score, construct the corresponding
metadata, and forward them to the HEIR Aggregator. The Global RAMA score calculator communicates
with the HEIR Aggregator, retrieves the aggregated scores and the corresponding metadata, calculates
the Global RAMA score and then sends it – alongside the metadata- to the Observatory. All the
communications are event-driven.

5.2.2.1.1 Prerequisites
Both the Local and Global RAMA score calculators are containerised using Docker Compose. Thus, the
system must have the following:

• Docker: Install Docker on your machine. Docker provides a platform for containerization,
allowing you to run applications in isolated environments.

• Docker Compose: Install Docker Compose, which is a tool used to define and run multi-
container Docker applications.

The provided docker-compose incorporates:

• The image per component (retrieved through SPHYNX’s Gitlab Repository)
• A Postgres database to store the results.

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 52 / 69

• The PgAdmin to examine the database.
• The configuration files related to the secrets (e.g., database passwords etc.) per docker image.

5.2.2.1.2 Pre-installation tasks
The local and the global RAMA score calculators depend on other HEIR-related components. Thus, to
receive the local and global RAMA score, the following components needs to be installed:

• HEIR Client: The component responsible to provide the input to the Local RAMA Score
calculator.

• HEIR Aggregator: The component responsible to receive the output of the Local RAMA Score
Calculator and provide the input to the Global RAMA score calculator.

Moreover, the connection between these components (through HEIR’s Message Broker) needs to be
tested.

5.2.2.1.3 Installation procedure
Once all prerequisite checks and controls are positively finished, the install process can start. The
installation is as follows:

• Login to SPHYNX’s Gitlab Container registry to download the latest local and global RAMA
score calculators.

• Start the Docker Containers: Use the docker-compose up command to start the Docker
containers defined in the Docker Compose file. Docker Compose will pull the necessary images,
create the containers, and wire them together based on the defined configuration.

5.2.2.1.4 Post-installation
Following the successful installation, the end-user will need to:

• Perform a docker log to identify if any exceptions/errors were raised during the initiation of the
docker-compose.

• Examine the logs to make sure that the HEIR client/HEIR aggregator reports the expected input.
• Examine the logs to make sure that the Local/Global RAMA score calculator produces the

results.

5.2.2.1.5 Update procedure
Updates on the Local and Global RAMA score calculators are being driven by the project requirements.
More specifically, SPHYNX is responsible to update the components and make them available to its
Gitlab Container Registry. Upon update, an e-mail is sent notifying users about the need to pull the
newest image.

If a major update occurs, the user is responsible for backup the database and the current deployment.

5.2.2.1.6 Uninstall or Roll-back procedure
The Local and Global RAMA score calculators are core components of the project. Thus, a formal
notification needs to be sent to the Technical Coordinator (TC), should an end-user wishes to uninstall
them from its system. Following this, the TC will notify the corresponding partner, which, in turn, will
be responsible to uninstall the components.

5.2.2.1.7 Technical Tests
During the implementation phase, SPHYNX employed a test methodology that involved using Junit5
and Mockito for unit and integration testing, respectively. In unit testing, individual code components
or modules were tested independently to verify that each works as expected. JUnit5 is a popular testing
framework for Java that provides annotations to define test methods, lifecycle methods, and assert
statements. In this methodology, JUnit5 is used for writing and executing unit tests for each module of
the Java application. Each test case is designed to validate the functionality of a specific module or class.

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 53 / 69

Mockito is a popular mocking framework that allows developers to create mock objects and use them
to simulate dependencies in unit tests. Integration testing is the process of testing multiple modules
together to verify their interactions and ensure that the application as a whole works as expected.
Integration tests are designed to test the interfaces between modules and detect defects that arise when
modules interact with each other. In this methodology, integration tests are designed to test the
integration points between modules. Mockito was also used to create mock objects that simulate the
behaviour of external dependencies.

Moreover, given that these components communicate with other HEIR-related components, the
following end-to-end tests were performed.

R1 GET Data from the HEIR Client
Descri
ption

HEIR Client’s output is being sent to the Local RAMA score calculator

Actors SPHYNX, BitDefender

Precon
ditions

The HEIR client is up and running

Steps

Step 1 Connect to pilots’ VM

Step 2 Docker log the local RAMA calculator

Step 3 Examine the logs to see if a new entry was received

Step 4 Verify that the event was received

Expect
ed
Result
s

A log message showing the entry is shown.

Actual
Result
s

{ "hospitalId":"1", "clientId":"5", "severity":"60",
"client_name":"Some client", "scan_id":"a06beae7-f742-3285-e74e83b6a7008a72",
"host_name":"HEIR-WIN10-2", "host_os":"Windows 10",
"scan_status":"finished",
"machine_id":"0102CC3601029F9E0102DE280102BB9F010280F30102E8B30102D9B80102805
70102CF370102C0FB0102AA4A0102A1AA0102B6E20102EA600102C9D00102B962",
"hospital_region":"PAGNI", "hospital_address":"Street no 1",
"connected_clients":"6", "het":[{ "triggered":"true",
"events":[]}], "vulnerabilityAssessment":[{ "triggered":"true",
"events":[]}], "hcc":[{ "triggered":"true",
"sslTest":null}], "hnm":[{ "triggered":"false",
"events":[]}], "siem":[{ "triggered":"false",
"events":[]}], "tdm":[{ "triggered":"false",
"events":[]}]}

R2 Local RAMA score output
Descri
ption

Examine that, upon receiving an event, the local RAMA score is being produced

Actors SPHYNX

Precon
ditions

The Local RAMA score is up and running

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 54 / 69

Steps

Step 1 Connect to pilots’ VM

Step 2 Docker log the local RAMA calculator

Step 3 Examine the logs to see if a new output exists.

Step 4 Verify that the output is correct.

Expect
ed
Result
s

A log message showing the entry is shown.

Actual
Result
s

{ "hospitalId":"1", "clientId":"5", "host_name":"HEIR-
WIN10-2",
"machine_id":"0102CC3601029F9E0102DE280102BB9F010280F30102E8B30102D9B80102805
70102CF370102C0FB0102AA4A0102A1AA0102B6E20102EA600102C9D00102B962",
"hospital_region":"PAGNI", "hospital_address":"Street no 1",
"connected_clients":"6", "severity":"60", "hccMetadata":null,
"hetMetadata":null, "vulnerabilityAssessmentAggregatedMetadata":{
"vulnerabilityAssessmentMetadata":[{ "application_name":"Docker Desktop 4.6.1",
"noOfVulnerabilities":"2",
"machineId":"0102CC3601029F9E0102DE280102BB9F010280F30102E8B30102D9B801028057
0102CF370102C0FB0102AA4A0102A1AA0102B6E20102EA600102C9D00102B962",
"vulnerabilities":[CVE-2018-10892, CVE-2023-0628]}],
"top10Vulnerabilities":{"CVE-2023-0628":77,"CVE-2018-10892":50},
"top10MostFrequentVulnerabilities":{"CVE-2023-0628":7066,"CVE-2018-10892":7066},
"totalNoOfVulnerabilities":"2", "lastTriggered":null},
"hnmMetadata":null, "siemMetadata":null, "indicators":{
"hnmScore":"0.0", "hccScore":"0.0", "hetScore":"0.0",
"vaScore":"8.0", "siemScore":"0.0", "calculated":"null"},
"numberOfCriticalEvents":"0", "lastTriggered":null}

R3 GET Data from the HEIR Aggregator
Description HEIR Aggregator output is being sent to the Global RAMA score calculator

Actors SPHYNX, Siemens

Preconditions The HEIR aggregator is up and running

Steps

Step 1 Connect to the observatory VM

Step 2 Docker log the Global RAMA score calculator

Step 3 Examine the logs to see if a new entry was received

Step 4 Verify that the event was received

Expected
Results

A log message showing the entry is shown.

Actual
Results

{ "hospitalId":"1", "created":2023-06-22 10:20:03.0,
"clientIdList":[5, 3, 6], "noOfClients":"3",
"globalRamaScore":"99.29222", "cyberSecurityStatus":"null",
"globalTemporalScore":"0.0", "globalBaseScore":"1.0111111",

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 55 / 69

"numberOfCriticalEvents":"0", "numberOfIdentifiedHeartbleeds":"0",
"noOfOSVulnerabilities":"0", "noOfMisconfigurations":"2",
"numberOfBenignFindings":"2", "numberOfMaliciousFindings":"0",
"noOfAppVulnerabilities":"3", "numberOfAttacks":"0",
"numberOfExploits":"0", "totalHNMFindings":"0",
"numberOfSIEMCriticalEvents":"0", "numberOfSIEMMediumEvents":"0",
"numberOfSIEMHighEvents":"0", "numberOfSIEMLowEvents":"0",
"totalNumberOfSIEMEvents":"0", "top10Vulnerabilities":{CVE-2023-
0628=77, CVE-2022-29072=72, CVE-2018-10892=50},
"top10FreqVulnerabilities":{CVE-2022-29072=7643, CVE-2023-0628=7066, CVE-2018-
10892=7066}}

R4 Global RAMA score output
Description Examine that, upon receiving an event, the Global RAMA score is being produced

Actors SPHYNX

Preconditions The Global RAMA score is up and running

Steps

Step 1 Connect to the observatory VM

Step 2 Docker log the Global RAMA score calculator

Step 3 Examine the logs to see if a new entry was produced.

Step 4 Verify that the Global RAMA score calculator produced an event.

Expected
Results

A log message showing the entry is shown.

Actual
Results

{ "id":"1", "numberOfHospitals":"3",
"connectedHospitals":[1, 4, 3], "updated":"2023-06-22 10:22:15.419",
"ramaScore":"99.00852", "cyberSecurityStatus":"Low",
"temporalScore":"0.25", "baseScore":"1.3092594",
"numberOfCriticalEvents":"0.0", "numberOfIdentifiedHeartbleeds":"0.0",
"noOfOSVulnerabilities":"2.0", "noOfMisconfigurations":"1.0",
"numberOfBenignFindings":"1.0", "numberOfMaliciousFindings":"0.0",
"noOfAppVulnerabilities":"2.0", "numberOfAttacks":"0.0",
"numberOfExploits":"0.0", "numberOfSIEMCriticalEvents":"0.0",
"numberOfSIEMMediumEvents":"0.0", "numberOfSIEMHighEvents":"0.0",
"numberOfSIEMLowEvents":"0.0", "totalNumberOfSIEMEvents":"0.0",
"top10Vulnerabilities":{

 "CVE-2023-0628" : 77,

 "CVE-2022-29072" : 72,

 "CVE-2019-16294" : 67,

 "CVE-2022-31901" : 65,

 "CVE-2022-31902" : 55,

 "CVE-2018-10892" : 50

}, "top10FreqVulnerabilities":{

 "CVE-2022-31902" : 13651,

 "CVE-2019-16294" : 13651,

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 56 / 69

 "CVE-2022-31901" : 13651,

 "CVE-2023-0412" : 11716,

 "CVE-2022-4345" : 11716,

 "CVE-2023-0413" : 11716,

 "CVE-2022-4344" : 11716,

 "CVE-2023-0416" : 11716,

 "CVE-2023-0417" : 11716,

 "CVE-2022-3724" : 11716

}, "hospitalInformation":[{ "id":"1",
"ramaScore":"99.29222", "temporalScore":"0.0",
"baseScore":"1.0111111", "connectedClients":"3",
"criticalEvents":"0", "totalAttacks":"0"}, { "id":"3",
"ramaScore":"98.55", "temporalScore":"0.75",
"baseScore":"1.7500001", "connectedClients":"2",
"criticalEvents":"0", "totalAttacks":"0"}, { "id":"4",
"ramaScore":"99.183334", "temporalScore":"0.0",
"baseScore":"1.1666667", "connectedClients":"1",
"criticalEvents":"0", "totalAttacks":"0"}]}

5.2.2.2 User manual

The user does not have direct communication with the Local or Global RAMA score calculator. More
specifically, the output of the Local RAMA score calculator is made available to the user through
HEIR’s 1st Layer GUI, whereas the output of the Global RAMA score calculator is made available
through HEIR’s Observatory.

5.2.3 HEIR Aggregator
5.2.3.1 Installation guide

The HEIR Aggregator is the component that makes the liaison between the HEIR client and RAMA
calculator on the one hand and the HEIR’s 1st layer of services GUI, and the Observatory on the other.
The HEIR Aggregator was initially conceived for medical institutions with multiple departments for
which individual HEIR clients and RAMA calculators were deployed, with the Aggregator collecting
and producing combined scored and metadata statistics.
Over the course of the project the purpose of the Aggregator has evolved into a connecting component
that performs the transfer of detected activity at the local level by the HEIR Clients and the RAMA
calculator to the HEIR local GUI and to the HEIR Observatory, and it is now deployed to all participant
Pilots of the HEIR project, regardless of the participating number of departments.

5.2.3.1.1 Prerequisites
The Heir Aggregator is deployed as a Docker container in Kubernetes.

The container includes a Python source code, a cron job file, as well as an .ini file to point to address for
an ElasticSearch and a Kafka connection to communicate with the RAMA Calculator, the GUI and
Observatory components.

To ensure a successful deployment and installation of the HEIR Aggregator component, several pre-
requisites must be met. These pre-requisites encompass both hardware and software requirements to
enable the proper functioning and integration of the Aggregator within the HEIR project ecosystem.
Here are the key pre-requisites:

Hardware Requirements:

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 57 / 69

• Sufficient processing power and memory to handle the expected data load and processing

requirements of the Aggregator.

• Stable and reliable network connectivity to facilitate communication with the RAMA calculator,

HEIR's 1st layer of services GUI, and the Observatory.

Software Requirements:

• Kubernetes Environment: The deployment of the HEIR Aggregator relies on a Kubernetes

environment. Ensure that a Kubernetes cluster is available and properly configured to host the

Aggregator.

• Docker: The HEIR Aggregator is deployed as a Docker container. Ensure that Docker is

installed and properly configured on the target deployment system.

• Elasticsearch storage

• Python Dependenciesàautomatically loaded in the Docker container:

o elasticsearch: The Aggregator component requires the elasticsearch library for

communication with the Elasticsearch database, where the collected data is stored.
o pandas: The pandas library is necessary for data manipulation and processing within the

Aggregator component.
o configparser: The configparser library is used for reading and parsing the configuration

file (ini file) of the Aggregator, allowing for easy customization and parameterization.
o kafka-python: The kafka-python library is required for establishing connections and

interactions with the Kafka messaging system used in the HEIR project.

Configuration Files:

• aggregator.ini File: The Aggregator utilizes an ini file for configuration purposes. This file
contains various settings and parameters, such as the addresses for the Elasticsearch and Kafka
connections. Ensure that the ini file is properly configured with the appropriate addresses and
settings according to the specific deployment environment.

It is essential to ensure that all pre-requisites are met before proceeding with the deployment and
installation of the HEIR Aggregator. Failure to meet these requirements may result in operational issues,
performance degradation, or improper functioning of the Aggregator component. Therefore, adherence
to hardware and software requirements, and careful configuration of the ini file are vital for a smooth
and successful deployment of the HEIR Aggregator within the HEIR project.

5.2.3.1.2 Pre-installation tasks
The HEIR Aggregator relies on HEIR-related components. Thus, the following components need to
already be present in the deployment environment:

• HEIR Client: The component responsible to provide the input to the Local RAMA Score
calculator.

• Local RAMA Calculator: The component responsible to receive the output of the HEIR Client
and provide the input to the HEIR Aggregator.

Moreover, the connection between these components needs to be tested.

5.2.3.1.3 Installation procedure
Once all prerequisite checks and controls are positively finished, the install process can start.

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 58 / 69

1. Retrieve the Docker Image:
• Access the SIE GitLab repository where the Docker image for the HEIR Aggregator is

hosted.
• Clone the repository or download the Docker image file to your local environment.

2. Create a Kubernetes deployment manifest YAML file that specifies the configuration and

resources for the HEIR Aggregator deployment.
3. Within the YAML file, reference the Docker image from the GitLab repository as the image for

the HEIR Aggregator container.

Include the necessary configuration settings, environment variables, and resource requests/limits as per
requirements.

5.2.3.1.4 Post-installation
Monitor Deployment:

• Use kubectl commands or Kubernetes dashboard to monitor the status of the HEIR Aggregator
deployment.

• Verify that the Aggregator pod(s) are running and have successfully started within the specified
namespace.

• Monitor logs and events to ensure proper initialization and connectivity to the required
resources, such as Elasticsearch and Kafka.

Validate Aggregator Functionality:

• Use appropriate testing methods to validate the functionality of the HEIR Aggregator.
• Ensure that it is successfully receiving and processing data from the HEIR clients and RAMA

calculator, and forwarding it to the HEIR local GUI and Observatory as expected.

5.2.3.1.5 Update procedure
1. Retrieve the Updated Docker Image

• Access the SIE GitLab repository where the updated Docker image for the HEIR Aggregator is
available.

2. Update Manifest File
• Identify the Kubernetes deployment manifest YAML file that was used for the initial

deployment of the HEIR Aggregator.
• Modify the YAML file to reference the updated Docker image, ensuring that the latest version

or tag were used.

3. Apply the Update
• Use the kubectl command to apply the updated deployment manifest file, which will trigger the

update process.

4. Monitor the Update Progress
• Monitor the status of the update process using kubectl commands or Kubernetes dashboard.
• Observe the rollout status, the termination of old pods, and the creation of new pods to ensure a

smooth transition.

5. Validate Aggregator Functionality
• Verify that the Aggregator is successfully receiving and processing activity data, forwarding it

to the appropriate destinations (HEIR local GUI and Observatory), and operating as expected.

6. Rollback (if necessary)

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 59 / 69

• If any issues or unexpected behaviour arise during or after the update, consider rolling back to
the previous version.

• Revert to the previous deployment manifest file or apply a backup to restore the previous state
of the HEIR Aggregator.

5.2.3.1.6 Uninstall or Roll-back procedure
The HEIR Aggregator is a core component of the project. Thus, a formal notification needs to be sent
to the Technical Coordinator (TC) should an end-user wish to uninstall it from their system. Following
this, the TC will notify the corresponding partner, which, in turn, will be responsible for uninstalling the
Aggregator component.

5.2.3.2 User manual

The user does not have direct communication with the HEIR Aggregator component. More specifically,
the output of the Aggregator is made available to the user through HEIR's 1st Layer GUI, whereas the
functionality and results of the Aggregator are accessible through the HEIR Observatory.

5.2.4 HEIR Observatory
5.2.4.1 Data Fusion Bus (DFB)

5.2.4.1.1 Installation guide
• The HEIR Observatory has been developed based on the ITML’s product namely Data Fusion

Bus (DFB) which is a real-time data platform. DFB consists of a stack of open source and
custom-made components to support secure flows and offer high availability, scalability, and
redundancy. It consists of the following components: Apache Kafka

• Apache Zookeeper
• DFB Admin: Java microservice for Apache Kafka administrative purposes
• Elastic Stack (Elasticsearch & Kibana)
• ES-Connector: Java microservice to store Apache Kafka topics to Elasticsearch.
• Grafana, JMX Exporter and Prometheus (Monitoring Stack for Apache Kafka)
• Web Server: NGINX

5.2.4.1.1.1 Prerequisites
Observatory DFB runs on top of Kubernetes.

Git, Docker, and a running Kubernetes cluster are required.

5.2.4.1.1.2 Pre-installation Tasks
DFB-admin and ES-Connector images should be built and present at the running Kubernetes Node.

5.2.4.1.1.3 Installation procedure
A shell script (install.sh) is implemented for the install procedure on a Kubernetes Cluster. Before
running the shell script, a variables.properties file is provided with template values that need to be
updated in order to match running environment.

5.2.4.1.1.4 Post-installation
DFB is deployed at its own Kubernetes namespace. After installation of DFB, Kubernetes standard
commands can be executed, in order to make sure all components are running e.g. kubectl -n dfb get
pods

5.2.4.1.1.5 Uninstall or Roll-back procedure
A shell script (uninstall.sh) is implemented to completely uninstall all DFB components from
the Kubernetes cluster.

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 60 / 69

5.2.4.2 2nd Layer of Visualizations

5.2.4.2.1 Installation guide
The HEIR’s 2nd layer of visualizations is one of the main components in HEIR Observatory and includes
all the elements and methods to present information gathered by the HEIR Observatory means. Such
information refers to the Global RAMA Score, relevant metadata, statistics and recommendations that
are produced based on the local RAMA, but also to active data policy rules that were extracted from the
Privacy Aware Framework of HEIR. Part of this information is transferred to Observatory through the
local HEIR Aggregators that are located at hospital’s premisses. The corresponding results are available
through the visualisation dashboard.

Users accessing the HEIR Observatory have read-only access to data collected from the HEIR Clients.
In order to support the addition of functionality that offers access to non-public information,
authentication mechanisms and a login page has been developed.

The 2nd layer of visualizations has been developed and offered in a docker-compose setup. It consists
of:

a. Front-end module: Angular-based framework
b. Back-end & Middleware: NodeJS
c. Web Server: ngnix

The front-end module refers to the main GUI of Observatory, while the back-end & middleware module
provides all the mechanisms and techniques to query and communicate data between HEIR databases,
sub-modules & clients, to generate analytics and statistics based on the derived data, to handle user-
access requests and finally to compose the final data schemas that the front-end module requires.

5.2.4.2.1.1 Prerequisites
In order to install and deploy the 2nd layer of visualizations, you need to have installed the docker &
docker compose on your host machine.

 Refer to the official docker compose reference site, in order to examine the docker-compose available
commands along with detailed descriptions and examples - link)

Internet access is also required.

5.2.4.2.1.2 Pre-installation Tasks
Ensure that the HEIR’s database (ElasticSearch) is accessible through a specific URI.

5.2.4.2.1.3 Installation procedure
In order to install the 2nd layer of visualization, you need to acquire the necessary configuration files,
that refer to one (1) docker-compose.yaml file and two (2) config files for the web-server (nginx).

In the docker-compose.yaml file, you need to input specific environment variables related to: a) your
preferred exposed URL of the platform, b) available ports of your host machine that the docker images
can use to communicate, c) the URI that the HEIR Observatory’s database is exposed. (ElasticSearch)

Given information about the exposed URLs & Ports needs to be filled in the nginx config files as well.

(Placeholders are available in the files, in order to point the exact lines where user-input is required)

Next, you need to transfer these files into the desired directory of your host machine. Then, open a
terminal, navigate inside the specified directory and type the “ $ docker-compose up -d “ command to
start the installation. Note that necessary images (front-end, back-end & middleware, and web-server)
will be automatically downloaded from HEIR’s docker hub account.

5.2.4.2.1.4 Update procedure
If you get notified from the HEIR’s admin team that updates are available, you’ll need to stop the
containers ($ docker-compose down), update the docker-compose.yaml’s images text fields with the

https://docs.docker.com/compose/reference/
https://docs.docker.com/compose/reference/

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 61 / 69

newer versions and re-enter the “ $ docker-compose up -d “ command. The updates will be automatically
incorporated.

Note that clearing the cache of the dockers and the internet’s browsers of your machine, is strongly
suggested after any update action.

5.2.4.2.1.5 Uninstall or Roll-back procedure
You can always rollback to previous versions by updating the docker-compose.yaml file’s images text
fields accordingly and repeat the previous step. (e.g rolling back 1 version the server: image:serverv02
à image:server01).

If you want to remove the containers you need to stop the containers and then remove them. (docker-
compose down , docker-compose rm).

Note that clearing the cache of the dockers and the internet’s browsers of your machine, is strongly
suggested after any update action.

5.2.4.2.1.6 Technical Tests
Adequate testing prior and after release to production is necessary to check not only functional aspects
of the delivery but also not-functional ones.

Some tests might need to be performed before or after deployment of the software component, especially
in cases when direct integration with other components is required.

5.2.4.2.2 User manual

5.2.4.2.2.1 Introduction

This User Manual (UM) provides the information necessary for users of the HEIR Observatory’s 2nd
layer of Visualizations to effectively utilize its functionalities and capabilities. The HEIR Observatory
is a comprehensive web application designed to collect, analyze, and present the results of deployed
HEIR Clients in healthcare environments. It serves as a central repository for storing and processing
cybersecurity data from participating hospitals, enabling global insights into the level of security in
healthcare environments. The manual is designed to help non-technical users effectively utilize these
components of the HEIR system.

The HEIR Observatory is a cloud-based framework that consists of a set of components that offer data
storage, processing and communication capabilities, as well as advanced visualizations. Its primary
purpose is to provide global insights into the level of security in healthcare sector, enabling end-users to
access global risk level indicators (e.g., Global RAMA scores), identified risks, vulnerabilities and
enabled data policies.
The HEIR’s 2nd layer of visualizations, which is the end-users access point to Observatory, presents the
results in an intuitive and user-friendly format, including charts, graphs, and advanced interactive
widgets that provide historical and aggregated insights, such as the top vulnerabilities by severity and
frequency. It follows a client-server architecture, where users access the application through a web-
based interface. This interface provides a graphical user interface (GUI) that allows users to navigate
and interact with the system efficiently. The web-based nature of the application ensures easy access
from various devices and platforms with internet connection, promoting widespread usability.
Additionally, a back-end component developed that enables analytics generation capabilities , seamless
communication and dependency management within the HEIR environment.
The framework is protected via an identity management mechanism, requiring users to register and log
into the system. Following a role-based access, navigation options are available only to authorized users.

5.2.4.2.2.2 Getting Started
1. Access the System

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 62 / 69

a. Request from the system administrator to create a valid user-account based on your role. (e.g.,
regulator, researcher etc.)
b. Open a web browser and enter the URL provided by your system administrator.
c. The login page will be displayed. Enter your credentials and click "Login" to access the
system (Figure 28).

Figure 28: HEIR Observatory Login Page

2. Dashboard Overview

Once logged in, you will be directed to the main dashboard, which provides an overview of the
system's key information and insights. a. At the top of the page, you will find a summary of the
number of connected hospitals, average critical events, and most frequent security reported
levels (Figure 29).

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 63 / 69

Figure 29: HEIR Observatory Main Dashboard

3. Global Insights

The Global insights section displays the main results of the HEIR Observatory, including the
Global RAMA Scores and relevant metadata. a. A line chart shows the evolution of Global
RAMA Scores over time, where users can use the historical request functionality, as well as the
zooming panning features to explore specific time periods (Figure 4).

4. Vulnerabilities

The vulnerabilities section provides detailed information on the top 10 vulnerabilities by
severity and frequency across all hospitals. Clicking on a specific vulnerability will provide
additional details and navigation to global knowledge databases for further investigation (Figure
30).

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 64 / 69

Figure 30: HEIR Observatory Vulnerabilities

5. System Modules
The system modules section displays generic statistics related to the embedded modules of the
HEIR Clients in each hospital. Information is categorized by the source modules such as Exploit
Tester's Metadata, Network Module's Metadata, Cryptographic Checker's Metadata,
Vulnerability Assessment's Metadata, and SIEM Metadata (Figure 31).

Figure 31: HEIR Observatory System Modules

6. Connected Hospitals
At the bottom of the page, you can find a list of connected hospitals, presented in an anonymized
manner. This allows you to monitor the Observatory's reach and impact without disclosing
specific hospital identities, while it depicts the security status of the individual hospitals (Figure
32).

Figure 32: HEIR Observatory Connected Hospitals

7. Global Policies
The Global Policies tab within the Observatory System is a dedicated section where authorized
users can access and review the active data policy rules. Designed with user-friendliness in
mind, the Global Policies tab presents these rules through easily understandable text and JSON
visualized widgets. Users can navigate through the tab to observe the policies in place,
accompanied by comprehensive descriptions and even sample data (Figure 33).

8. Logging Out
To exit the HEIR Observatory, click on the "Logout" button located in the top menu bar.

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 65 / 69

Figure 33: HEIR Global Policies

5.2.4.2.2.2.1 Cautions & Warnings

Unauthorized Access Prohibited
The HEIR Observatory is a web portal intended for authorized use only. Any unauthorized access or
attempts to breach the system's security are strictly prohibited and may result in legal action. Users are
responsible for ensuring the confidentiality and integrity of their login credentials and must not share
them with anyone.

5.2.4.2.2.2.2 Set-Up Considerations

To access the HEIR Observatory, you will need a computer or device with internet connectivity. There
is no need for any specialized equipment or network configurations. Simply ensure that you have a
working internet connection and a web browser installed.

5.2.4.2.2.2.3 User Access Considerations

The HEIR Observatory support role-based access. There are two main user roles: General Authorized
Users and Authorized Policy Experts. Here's a brief description of each role and the corresponding
restrictions placed on system accessibility:

1. General Authorized Users:
General Authorized Users, like researchers or security experts, have access to the main page of
the HEIR Observatory. They can explore the various visualizations, reports, and insights
provided by the Observatory.

2. Authorized Policy Experts:
Authorized Policy Experts have enhanced access privileges within the HEIR Observatory. They
can access both the main dashboard screen and the Global Policies view. This expanded access
allows policy experts to observe the active data policy rules across the connected organizations.

5.2.4.2.2.2.4 Accessing the System

In order to access the System, users need to request from the system administrator to create a
corresponding account based on their role and needs. The admin will provide the necessary credentials

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 66 / 69

to access the platform. In order, to change or retrieve missing credentials, users need to contact the
system admin.

5.2.4.2.2.2.5 System Organization & Navigation

The HEIR’s 2nd layer of visualizations has been developed as to provide users with easy access to its
main functions and features. The system's main organization is implemented through the menu panel
and a home page button that serves as the main hub for navigation. Below, you will find a short
descriptions of the navigation options.

1. Login Page:
Upon accessing the system, users will be directed to the login page. Here, users are required to
enter their unique user ID and password to gain access to the system. Once successfully logged
in, users will be navigated to the main dashboard.

2. Home Page / Dashboard
The home page serves as the main dashboard, containing the Observatory’s main results. It
provides a comprehensive view of the system's data, statistics, and relevant information. It offers
graphical representations and visualizations to help users understand and analyze the collected
data.

3. Global Policies
The Global Policies screen allows authorized policy experts to observe and review the currently
active data policy rules across the HEIR’s connected hospitals. Users with relevant permissions
can access this screen by selecting the " Global Policies" option from the main menu.

5.2.4.2.2.2.6 Exiting the System

To ensure proper exit from the HEIR Observatory system, follow the steps outlined below:

1. Logout: When you are ready to exit the system, locate the "Logout" option, found in the top-
right corner of the screen. Click on the "Logout" option to initiate the logout process.

2. Session Termination: Once the logout process is finished, the system will terminate your current
session. This ensures that your user account is securely logged out, preventing unauthorized
access to your account and protecting your sensitive information.

3. Close the Browser: After successfully logging out, it is recommended to close the web browser
entirely. This step ensures that no residual information or cached data related to your session
remains accessible.

5.2.4.2.2.3 Using the System

5.2.4.2.2.3.1 Interacting with RAMA evolution chart

The following steps outline how users can interact with the widget effectively:

1. Select a specific date-time period from the calendar provided. Upon selection, the chart will
update accordingly, displaying the relevant information within the chosen interval. This feature
enables users to analyze the RAMA evolution over specific time frames.

2. The control panel, located at the top-right corner of the chart, offers several useful
functionalities. Users can utilize this panel to perform various actions such as downloading the
chart in different formats like SVG, PNG, or CSV. Additionally, users have the ability to zoom
in and out of the chart, facilitating a closer examination of specific data points. Selection zoom
allows users to focus on specific areas of interest, while panning enables seamless navigation
across the chart. Furthermore, the control panel provides a reset zoom option, allowing users to
revert to the default view.

3. For a more detailed analysis, users can leverage their mouse to interact directly with the chart.
By holding down the left click and selecting a specific period, users can zoom in on their chosen
interval, enabling a closer examination of the data. Moreover, hovering the mouse over the dots
representing the RAMA scores provides additional information about each score.

5.2.4.2.2.3.2 Vulnerabilities buttons

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 67 / 69

Within the Observatory, users will discover two distinct lists that offer valuable insights into the top 10
vulnerabilities reported across all hospitals. These lists are categorized based on severity and frequency,
providing users with a comprehensive understanding of the security landscape. For security experts
seeking in-depth information about the displayed vulnerabilities, side buttons are available. By clicking
on these buttons, users will be seamlessly redirected to globally recognized knowledge databases, such
as MITRE.

5.2.5 HEIR SIEM
5.2.5.1 Installation guide

The HEIR SIEM has been developed based on the ITML’s product namely Security Infusion (SI) which
is an all-in-one solution, leveraging a plethora of state-of-the-art technologies and tools.

SI is an application that provides, in one single solution, basic features of SIEM, Monitoring and IDS
systems, constituting a Control Baseline of ICT operations, with integrated risk mitigation and
regulatory compliance capabilities.

Data form the underlying ICT infrastructure related with performance, services, network, and computing
events, are monitored, collected, and analyzed in real time, with the capability of further storage for
purposes of incident investigation and forensic analysis.

It consists of the following components:

• Apache Kafka
• Apache Zookeeper
• DFB Admin: Java microservice for Apache Kafka administrative purposes
• Elastic Stack (Elasticsearch & Kibana)
• ES-Connector: Java microservice to store Apache Kafka topics to Elasticsearch.
• Web Server: NGINIX
• Frontend Application: Laravel
• Wazuh & Filebeat
• Nagios
• SI agents

5.2.5.1.1 Prerequisites
Security Infusion runs on top of Kubernetes.

Prerequisites for the Security Infusion setup:

• Git
• Ansible
• Python
• Docker
• A running Kubernetes Cluster

5.2.5.1.2 Pre-installation Tasks
Security Infusion docker images should be present at the running Kubernetes node.

5.2.5.1.3 Installation procedure
A Python script (templates.py) is implemented to modify Security Infusion Kubernetes manifests to
match the working environment using a text file (csm-configuration.txt) that contains all the required
values for the Templates substitution which needs to be modified before running the python script.

The installation process is done using an implemented Ansible playbook (playbook.yml).

5.2.5.1.4 Post-installation

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 68 / 69

SI is deployed at its own Kubernetes namespace. After installation of SI, Kubernetes standard commands
can be executed, in order to make sure all components are running e.g. kubectl -n infusion get pods.

5.2.5.1.5 Uninstall or Roll-back procedure
An Ansible script (uninstall-playbook.yml) is implemented to completely uninstall all SI components
from the Kubernetes cluster.

D5.5 - Best practices for maintaining/operating the framework in the long-run–TRL7

Grant Agreement 883275 - HEIR Public Page 69 / 69

6. Conclusion
The overall objective of this deliverable is to report all the commercialization activities of HEIR project
by releasing a stable and reliable solution for the health-care industry and in turn for any end-to-end
environment facing similar challenges. For this reason, the best practices for maintaining the framework
are discussed in order to develop a plan tailored to HEIR needs and requirements. The maintenance plan
adopts IEEE’s framework for sequential maintenance activities with the following main objectives of
this plan:

• Minimize system downtime by promptly addressing software issues and applying necessary
fixes.

• Enhance system performance through performance optimization and tuning.
• Ensure the software remains compatible with evolving technology platforms and environments.
• Implement security updates and patches to protect against vulnerabilities and cyber threats.
• Continuously improve the software by incorporating user feedback and implementing new

features.
• Adhere to regulatory and compliance requirements specific to the software domain.

Among the best practices identified that set the framework for the maintenance plan are its alignment
with business goals, regular updates, upgrades and patches, effective maintenance role assignments and
processes, proactive monitoring, quality assurance, documentation, version control and management,
bug tracking and defect management, risk management, data retention and backup and security
compliance.

Moreover, an overall report around the investigated usefulness of HEIR solution is presented based on
the work conducted in terms of T6.3. The scope of this report is to verify and provide evidence regarding
the usefulness of HEIR solution. The results, based on standardized (UEQ) or customized questionnaires
and collected by employees that were and were not familiar with the solution as well as by IT and non-
IT experts during HEIR training days, depict a promising picture regarding the acceptability, usefulness
and usability of HEIR solution. All legal, ethical and privacy aspects, as reported on D7.5 and D7.6, are
discussed in relation to real-world scenarios of the framework’s utilization.

Finally, a deployment/installation guide and a user manual (if applicable) are collected and presented
per component of HEIR framework to facilitate its deployment in real-world scenarios. The guides and
the manuals are formatted in such a way that promote the applicability of the framework in any
environment.

